Принципы структурной организации белков - Г. Шульц 1982


Литература

1. Kühne W., Über das Verhalten verschiedener organisirter und sogenannter ungeformter Fermente. Über das Trypsin (Enzym des Pankreas). Verhandlungen des Heidelb. Naturhist.-Med. Vereins N. S. I, 2—5 (1976). Reproduced in FEBS Lett. 62, E3 (1976).

2. Hoppe-Seyler F., Über die chemischen und optischen Eigenschaften des Blutfarbstoffs. Virchows Arch. 29, 233 (1864).

3. Calvin M., Chemical Evolution, Clarendon Press, Oxford, 1969.

4. Crick F. H. C., The origin of the genetic code. J. Mol. Biol. 38, 367 (1968).

5. Orgel L. E., Evolution of the genetic apparates. J. Mol. Biol. 38, 381 (1968).

6. Eigen M., Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465 (1971).

7. Tischendorf G. W., Zeichardt H., Stöffer G., Architecture of the Escherichia coli ribosome as determined by immune electron microscopy. Proc. Natl. Acad. Sci. USA 72, 4820 (1975).

8. Miller S. L., Production of some organic compounds under possible primitive Earth conditions. J. Amer. Chem. Soc. 77, 2351 (1954).

9. Bonner W. A., van Dort M. A., Yearian M. R., Asymmetric degradation of DL-leucin with longitudinally polarised electrons. Nature 258, 419 (1975).

10. Tse-Fei Wong J., A co-evolution theory of the genetic code. Proc. Natl. Acad. Sci. USA 72, 1909 (1975).

11. Richards К. E., Guilley H., Jonard G., Hirth L., A specifically encapsidated fragment from RNA of tobacco mosaic virus: Sequence homology with the coat protein cistron. FEBS Lett. 43, 31 (1974).

12. Sanger F., Air G. M., Barrell B. G., Brown N. L., Coulson A. R., Fiddes J. C., Hutchison III C. A., Slocombe P. M.., Smith M., Nucleotide sequence of bacteriophage —X174 DNA. Nature 265, 687 (1977).

13. Fiers W., Contreras R., Duerinck F., Haegeman G., Inserentant D., Merregaert J., Min Jou W., Molemms F., Raeymaekers A., Van den Berghe A., Volckaert G., Ysebaert M., Complete nucleotide sequence of bacteriophage MS2 RNA: Primary and secondary structure of the replicase gene. Nature 260, 500 (1976).

14. Barrell B. G., Air G. M., Hitchison III C. A., Overlapping genes in bacteriophage 0X174. Nature 264, 34 (1976).

15. Kauzmann W., Some foctors in the interpretation of protein denaturation. Adv. Prot. Chem. 14, 1 (1959).

16. Nozaki Y., Tanford C., The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. J. Biol. Chem. 246, 2211 (1971).

17. Chothia C., Hydrophobic bonding and accesible surface area in proteins. Nature 248, 338 (1974).

18. Birktoft J.J., Blow D. M., Structure of crystalline a-chymotrypsin. J. Mol. Biol. 68, 187 (1972).

19. Ленинджер А. Биохимия. — M.: Мир, 1976

20. Dayhoff М. О., Atlas of Protein Sequence and Structure, Natl. Biom. Res. Foundation, Washington D. C., 1972.

21. IUРАС — IUВ Comission on Biochemical Nomenclature 1969, Abbreviations and symbols for the descriptions of the conformations of polypeptide chains. Biochemistry 9, 3471 (1970).

22. Уотсон Цок. Молекулярная биология гена. — М.: Мир, 1978.

23. Полинг Л. Природа химической связи. —М.: Гос. изд. хим. лит., 1947 (перевод 1-го изд.).

24. Lehninger A. L., Bioenergetics, W. A. Benjamin, Menlo Park, California, 1971, p. 173.

25. Pauling L., Corey R. B., Branson H. R., The Structure of proteins: Two hydrogen-bonded helical configurations of the polipeptide chain.Proc. Acad. Sci. USA 37, 205 (1951).

26. Tables of Interatomic Distances in Molecules and Ions, Suppl. Spec. Publ. No. 18, The Chemical Society, London, 1965.

27. Edsall J. T., Flory P. J., Kendrew J. C., Liquori A. M., Nemethy G., Remachandran G. N., Scheraga H. A., A proposal of standard conventions and nomenclature for the description-of polypeptide conformations. J. Mol. Biol. 15, 399 (1966).

28. Ramachandran G. N., Ramakrishnan C., Sasisekharan V., Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95 (1963).

29. Ramachandran G. N., Sasisekharan V., Conformation of polypeptides and proteins. Adv. Prot. Chem. 23, 283 (1968).

30. Lavitt M., A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 104, 59 (1976).

31. Burgess A. W., Ponnuswamy P. K., Scheraga H. A., Analysis cf 'onformations of amino acid residues and prediction of backbone topography in protein. Israel J. Chem. 12, 239 (1974).

32. Brant D. A., Miller W. G., Flory P. J., Conformational energy estimates for statistically coiling polypeptide chains. J. Mol. Biol. 23, 47 (1967).

33. N i metry G., Scheraga H. A., Protein folding. Duart. Rew. Biophys. 10, 239 (1977).

34. Ramachandran G. N., Venkatachalam C. M., Krimm S., Stereochemical criteria for polypeptide and protein chain conformations. Biophys. J. 6, 849 (1966).

35. Gieren A., Dederer B., Schanda F., Some new aspects concerning conformation of polypeptide chains in proteins. Z. Naturforsch, in press (1978).

36. Winkler F. K., Dunitz J. D., The non-polar amide group. J. Mol. Biol. 59, 169, (1971).

37. Wieland T., Birr C., Homodetic cyclic peptides. International Review of Science, Ordanic Chemistry Series Two, Vol. 6, p. 183, Butterworth, London, 1976.

38. Karle J. L., Karle J., Wieland T., Bürgermeister W., Faulstich H., Witkop B., Conformations of the Li-antamanide complex and Na-(Phe4, Val6)antamanide complex in the crystalline state. Proc. Nat. Acad. Sci. USA 70, 1836 (1973).

39. Wyckoff H. W., Tsernoglou D., Hanson A. W., Knox J. B., Lee B., Richards F. M., The three-dimensional structure of ribonuclease S. J. Biol. Chem. 245, 305 (1970).

40. Schubert-Wright C., Alden R. A., Kraut J., Structure of subtilisin BPN' at 2,5 Å resolution. Nature 221, 2.35 (1969).

41. Cahn R. S., Ingold. C. K., Prelog V., The specification of asymmetric configuration in organic chemistry. Experentia 12, 81 (1956).

42. Epp O., Lattman E. E., Schiffer M., Huber R., Palm W., The molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI refined at 2,0 Å resolution. Biochemistry 14, 4943 (1975).

43. Quiocho F. A., Lipscomb W. N., Carboxypeptidase A: A protein and an enzyme. Adv. Chem. 25, 1 (1971).

44. Fischer E., Einfluß der Configuration auf die Wirkung der Enzyme. Chem. Ber. 27, 2985 (1894).

45. London F., Über einige Eigenschaften und Anwendungen der Molekularkräfte. Z. Phys. Chem. Abt. В 11, 222 (1930).

46. Slater J. C., Kirkwood J. G., The van der Waals forces in gases. Phys. Rev. 37, 682 (1931).

47. Jones J. E., On the determination of molecular fields. Proc. Roy. Soc. London, Ser. A106, 441 (1924).

48. Slater J. C., The normal state of helium. Phys. Rev. 32, 349 (1928).

49. Buckingham R. A., The classical equation of state of gaseous helium, neon and argon. Proc. Roy. Soc. London, Ser. A 168, 264 (1938).

50. Handbook of Chemistry and Physics, 41st ed., Chemical Rubber, Cleveland, Ohio, 1959, p. 2523.

51. Brant D. A., Conformational analysis of biopoiimers: Conformational energy calculation. Annu. Rev. Biophys. Bioeng. 1, 369 (1972).

52. Momany F. A., McGuire R. F., Burgess A. W., Scheraga Н. A., Energy parameters in polipeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, and intrinsic torsional potentials for the naturally occurring amino acids. J. Phys. Chem. 79, 2361 (1975).

53. Haglar A. T., Lapiccirela A., Spatial electron distribution and population analysis of amides, carboxylic acids, and peptides, and their relation to empirical potential functions. Biopolymers 15, 1167 (1976).

54. Flagler A. T., Huler E., Lifson S., Energy functions for peptides and proteins. I. Derivation of a consistent force fields including the hydrogen bond from amide crystals. J. Am. Chem. Soc. 96, 5319 (1974).

55. Levitt M., Energy refinement of hen egg-white lysozyme. J. Mol. Biol. 82, 393 (1974).

56. Jeziorski В., van Hermet M., Variation — perturbation treatment of the hydrogen bond between water molecules. Mol. Phys. 31, 713 (1976).

57. Pauling L., The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York, 1960, p. 461.

58. Pimentel G. C., McClellan A. L., The Hydrogen Bond, Freeman Sc Co, London, 1960, pp. 242, 282.

59. Moews P. C., Kretsinger R. H., Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference Fourier analysis. J. Mol. Biol. 91, 201 (1975).

60. Perutz M. F., Stereochemistry of cooperative effects of haemoglobin. Nature 228, 726 (1970).

61. Kretsinger R. H., Nockolds С. E., Carp muscle calcium-binding protein. J. Biol. Chem. 248, 3313 (1973).

62. Bode W., Schwager P., The refined crystal structure of bovine ß-trypsin at 1,8 Å resolution. J, Mol. Biol. 98, 693 (1975).

63. Richards F. M., The interpretation of protein structures: Totat volume, group volume distributions and packing density. J. Mol. Biol. 82, 1 (1974).

64. Richards F. M., Areas, volumes, packing and protein structure. Annu. Rev. Biophys. Bioeng. 6, 151 (1977).

65. Brandts J. F., Oliveira R. J., Westort C., Thermodinamics of protein denaturation. Effect of pressure on the denaturation of ribonuclease A. Biochemistry 9, 1038 (1970).

66. d’Ans-Lax, Taschenbuch für Chemiker und Physiker, Vol. 1. Springer-Verlag, Berlin, 1967.

67. Wyckoff H. W., Compensating nature of substitutions in pancreatic ribonucleases. Brookhaven Symp. Biol. 21, 252 (1968).

68. Finney J. L., Volume occupation, environment and accessibility in proteins. The problem of the protein surface. J. Mol. Biol. 96, 721 (1975).

69. Momany F. A., Carruthers L. M, McGuire R. F., Scheraga H. A., Intermolecular potentials from crystal data. III. Determination of empirical potentials and application to the packing configurations and lattice energies in crystals of hydrocarbons, carboxilic acids, amines and amides. J. Phys. Chem. 78, 1595 (1974).

70. Lifson S., Warchel A., Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkana and n-alkane molecules. J. Chem. Phys. 49, 5116 (1968).

71. Warshel A., Levitt M., Lifson S., Consistent force field for calculation of vibrational spectra and conformations of some amides and lactam rings. J. Mol. Spectrosc. 33, 84 (1970).

72. Adman E., Watenpaugh К. D., Jensen L. H., NH—S hydrogen bonds in Pep- tococcus aerogenes ferredoxin, Chostridium pasteurianum rubredoxin, and chromatium high potential iron protein. Proc. Nat. Acad. Sci. USA 72, 4854 (1975).

73. Bondi A., Wan der Waals volumes and radii. J. Phys. Chem. 68, 441 (1964).

74. Benzer S. The Chemical Basis of Heredity, McElroy W. D., Glass B., Eds. John Hopkins University Press, Baltimore, 1957, pp. 70—93.

75. Edelman G. M., Cunningham B. A., Gall W. E., Gottlieb P. D., Rutishauser U. Waxdal M. J., The covalent structure of an entire G immunoglobulin molecule. Proc Nat. Acad. Sci. USA 63, 78 (1969).

76. Kirschner K., Bisswanger H., Multifunctional proteins. Annu. Rev. Biochem. 45, 143 (1976).

77. Goldberg W. E., Tertiary structure of Escherichia coli ß-D-galactosidase. J. Mol. Biol. 46, 441 (1969).

78. Gilbert W., Why genes in pieces? (editorial). Nature 271, 501 (1978).

79. Davidson E. H., Britten R. J., Organization, transcription and regulation in the animal genome. Quart. Rev. Biol. 48, 565 (1973).

80. Stammers D. K., Muirhead H., Three-dimensional structure of cat muscle pyruvate kinase at 3.1 A resolution. J. Mol. Biol. 112, 3C9 (1977).

81. Klotz I. M., Darnall D. W., Langerman N. R., Quaternary structure of proteins. In: The Proteins (H. Neurath, Ed.), 3rd., Vol., I, Academic Press, New York, 1975, pp. 293—411.

82. Brown J. R., Structural origins of mammalian albumin. Fed. Proc. 35, 2141 (1976).

83. Koda L., Adenylate kinase. The Enzymes 8, 279 (1973).

84. von Zabern I., Wittmann-Liebold B., Untuch-Grau R., Schirmer R. H., Pai E., Primary and tertiary structure of the principal human adenylate kinase. Eur. J. Biochem. 68, 281 (1976).

85. Stryer L., Biochemistry. W. H. Freeman, San Francisco, 1975.

86. Peterson P. A., Rask L., Sege K., Klareskog L., Anundi H., Ostberg L., Evolutionary relationship between immunoglobulins and transplantation antigens. Proc. Nat. Acad. Sei. USA 72, 1612 (1975).

87. Bach F. H., Genetics of transplantation: The major histocompatibility complex. Annu. Rev. Genet. 10, 281 (1976).

88. Peterson P. A., Cunningham B. A., Berggard I., Edelman G. M., ß2-Microglobulin — A free immunoglobulin domain. Proc. Nat. Acad. Sci. USA 69, 1697 (1972).

89. Frieden E., Protein — protein interaction and enzymatic activity. Annu. Rev. Biochem. 40, 653 (1971).

90. Chan W. H. C., Relationship between quaternary structure and enzyme activity. Trends Biol. Sci., 1, 258 (1976).

91. Rossmann M. G., Liljas A., Bränden С.-I., Banaszak L. J., Evolutionary and structural relationships among dehydrogenases. The Enzymes 11, 61(1975).

92. Monod J., Wyman J., Changeux J.-P., On the nature о allosteric transitions: A plausible model. J. Mol. Biol. 12, 88 (1965).

93. Koshland D. E., Jr., The evolution of function in enzymes. Fed. Proc. 35, 2104 (1976).

94. Anfinsen С. В., Scheraga Н. A., Experimental and theoretical aspects of protein folding. Adv. Chem. 29, 205 (1975).

95. Sela M., White F. H., Anfinsen С. B., Reductive cleavage of disulfide bridges in ribonuclease. Science 125, 691 (1957).

96. White F. H., Jr., Regeneration of native secondary and tertiary structures by air oxidation of reduced ribonuclease. J. Biol. Chem. 236, 1353 (1961).

97. Anfinsen С. B., Haber E., Studies on the reduction and reformation of protein disulfide bonds. J. Biol. Chem. 236, 1361 (1961).

98. Olins D. E., Edelman G. M. Reconstitution of 7S molecules from L and H polypeptide chains of antibodies and y-globulins. J. Exp. Med. 119, 789 (1964).

99. Freedman M. H., Sela M., Recovery of antigenic activity upon reoxydation of completery reduced polyalanyl rabbit immunoglobulin G. J. Biol. Chem. 241, 2383 (1966).

100. Petersen J. G. L., Dorrington К. E, An in vitro system for studies the kinetics of interchain disulfide bond formation in immunoglobulin G. J. Biol. Chem. 249, 5633 (1974).

101. Givol D., DeLorenzo F., Goldberger R. F., Anfinsen С. B., Disulfide interchange and the three-dimensional structure of proteins. Proc. Nat. Acad. Sci. USA 53, 676 (1965).

102. Della Corte E., Parkhouse R. A4. E., Biosynthesis of immunoglobulin (IgA) and immunoglobulin M (IgM). Requirement for J-chain and a disulfide-exchanging enzyme for polymerization. Biochem. J. 136, 597 (1973).

103. Ziegler D. M., Poulsen L.L., Protein disulfide bond synthesis, a possible intracellular mechanism. Thends Biol. Sci. 2, 79 (1977).

104. Venetianer P., Straub F. B., The enzymic reactivation of reduced ribonuclease. Biochim. Biophys. Acta 67, 166 (1963).

105. Goldberger R. F., Epstein C. J., Anfinsen С. B., Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J. Biol. Chem. 238, 628 (1963).

106. DeLorenzo F., Goldberger R. F., Steers E., Givol D., Anfinsen C. B., Purification and properties of an enzyme from beef liver which catalyzes sulfhydryl-disulfide interchange in proteins. J. Biol. Chem. 241, 1562 (1966).

107. Fuchs S., DeLorenzo F., Anfinsen С. B., Studies on the mechanism of the enzymic catalysis of disulfide interchange in proteins. J. Biol. Chem. 242, 398 (1967).

108. Flory P. J., Principles of Polymer Chemistry. Cornell University Press, Ithaca, New York, 1953. Chap. 14.

109. Straub F. B., SH-groups and SS-bridges in the structure of enzymes. Proc. 7th Int. Congress Biochem. (Tokyo), 42 (1967).

110. Wall J. S., Disulfide bonds: Determination location and influence on molecular properties of proteins. J. Agr. Food Chem. 19, 619 (1971).

111. Williams C. H., Jr., Flavin-containing dehydrogenases. The Enzymes (3rd ed.) 13, 89 (1976).

112. Hatfield G. W., Burns R. O., Threonine deaminase from Salmonella typhimurium. J. Biol. Chem. 245, 787 (1970).

113. Pontremoli S., Horecker B. L., Fructose-1,6-diphosphatases. The Enzymes (3rd ed.) 4, 611 (1971).

114. Ernest М. J., Kim К. H., Regulation of rat liver glycogen synthetase D. J. Biol. Chem. 249, 5011 (1974).

115. Ernest М. J., Kim К. H., Regulation of the rat liver glycogen synthetase. J. Biol. Chem. 248, 1550 (1973).

116. DeLorenzo F., Fuchs S., Anfinsen С. B., Characterization of a peptide fragment containing the essential half-cystine residue of a microsomal disulfide interchange enzyme. Biochemistry 5, 3961 (1966).

117. Sakai Н., A ribonucleoprotein which catalyzys thiol-disulfide exchange in the sea urchin egg. J. Biol. Chem. 242, 1458 (1967).

118. Cuatrecasas P., Proc. Symp. Insulin Action, Toronto, Canada, Academic Press, New York, 1972, p. 137.

119. Czech AT, Molecular basis of insulin action. Annu. Rev. Biochem. 46, 359 (1977).

120. Bhakdi S., Knüfermatin H., Schmidt-Ullrich R., Fischer H., Wallach D. F., Interaction between erythrocyte membrane proteins and complement components. Biochim. Biophys. Acta 363, 39 (1974).

121. Morino Y., Snell E. E., The subunit structure of tryptophanase. J. Biol. Chem 242, 5602 (1967).

122. Hatfield G. W., Burns R. O., Specific binding of leucyl transfer RNA to an immature form of L-threonine deaminase: Its implications in repression. Proc. Nat. Acad. Sci. USA 66, 1027 (1970).

123. Jones E. T., Williams C. H., Jr., The sequence of amino acid residues around the oxidation — reduction active disulfide in yeast glutathione reductase. J. Biol. Chem. 250, 3779 (1975).

124. Schulz. G. E., Schirmer R. H., Sachsenheimer W., Pai E. F., The structure of the flavoenzyme glutathione reductase. Nature 273, 120 (1978).

125. Bornstein P., The biosynthesis of collagen. Annu. Rev. Biochem. 43, 567 (1974).

126. Tänzer Al. L., The biological diversity of collagenous proteins. Trends Biochem. Sci. 3, 15 (1978).

127. Uitto J., Lichtenstein J. R., Defects in the biochemistry of collagen in diseases of connective tissue. J. Invest. Dermatol. 66, 59 (1976).

128. Byers P. H., Click E. AT, Harper E., Bornstein P., Interchain disulfide bonds on procollagen are located in a large nontriple-helical COOH-terminal domain. Proc. Nat. Acad. Sci. USA 72, 3009 (1975).

129. Veis A., Brownell A. C., Collagen biosynthesis. CRC Crit. Rev. Biochem. 2, 417 (1974).

130. Tanzer AT L., Church R. L., Yaeger J. A., Wampler D. E., Park E. D., Procollagen: Intermediate forms containing several types of peptide chains and non-collagen peptide extensions at NH2 and COOH ends. Proc. Nat. Acad. USA 71, 3009 (1974).

131. Martin G. R., Byers P. H., Piez К. A., Procollagen. Adv. Enzymol. 42, 167 (1975).

132. Narita K., Matsuo H., Nakajima T., End group determination. In: Protein Sequence Determination (S. B. Needleman, Ed.), 2nd ed., Springer-Verlag, Heidelberg, 1975, pp. 30—103.

133. Jones G. H., Cell-free synthesis of amino-terminal L-pyroglutamie acid. Biochemistry 13, 854 (1974).

134. Burstein Y., Kantor F., Schechter L, Partial amino-acid sequence of the precursor of an immunoglobulin light chain containing NH2-terminal pyroglutamic acid. Proc. Nat. Acad. Sei. USA 73, 2604 (1976).

135. Chen R., Brosius J., Wittmann-Liebold B., Occurrence of methylated amino acids as N-termini of proteins from Escherichia coli. ribosomes. J. Mol. Biol. Ill, 173 (1977).

136. Gillen R. G., Riggs A., Structure and function of the isolated hemoglobins of the American eel, anguilla rostrata. J. Biol. Chem. 248, 1961 (1973).

137. Ottesen M, Induction of biological activity by limited proteolysis. Annu. Rev. Biochem. 36, 55 (1967).

138. Neurath H., Walsh К. A., Role of proteolytic enzymes in biological regulation (a review). Proc. Nat. Acad. Sci. USA 73, 3825 (1976).

139. Haenn de C., Neurath H., Teller D. C., The phylogeny of trypsin-related serine proteases and their zymogens. New methods for the investigation of distant evolutionary relationships. J. Mol. Biol. 92, 225 (1975).

140. Hershko A., Fry М., Post-translational cleavage of polypeptide chains: Role in assembly. Annu. Rev. Biochem. 44, 775 (1975).

141. Apte B. N., Zipser D. Authors’ statement on polypeptide splicing. Proc. Nat. Acad. Sei. USA 73, 661 (1976).

142. Hendrix R. W., Casjens S. R., Protein fusion: A novel reaction in bacteriphage A head essembly. Proc. Nat. Acad. Sci. USA 71, 1451 (1974).

143. Maroux S., Baratti J., Desnuelle P., Purification and specificity of porcine enterokinase. J. Biol. Chem. 246, 5031 (1971).

144. Ring J. L., Jukes T. H., Non-Derwinian evolution. Science 164, 788 (1969).

145. Dayhoff M. O., Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 2 and earlier volumes. Nat. Biom. Res. Foundation, Washington, D. C., 1976.

146. Steiner D. F., Proteolytic processing in the biosynthesis of insulin and other proteins. Fed. Proc. 33, (10) 2105 (1974).

147. Müller-Eberhard H. J., Complement. Annu. Rev. Biochem. 44, 697 (1975).

148. Davie E. R., Fujikawa R., Basic mechanisms in blood coagulation. Annu. Biochem. 44, 799 (1975).

149. Blobel G., Dobberstein B., Transfer of proteins across membranes. J. Cell. Biol. 67, 835 (1975).

150. Milstein C., Brownless G. G., Harrison T. M., Mathews M. B., A possible precusor of immunoglobulin light chains. Nature New Biol. 239, 117 (1972).

151. Schechter J., McRean D. J., Gayer R., Terry W., Partial amino acid sequence of the precursor of immunoglobulin light chain programmed by messenger RNA in vitro. Science 188, 160 (1974).

152. Remper B., Habener J. F., Mulligan R. C., Potts J. T., Rich A., Pre-proparathyroid harmone: A direct translational product of parathyroid messenger RNA. Proc. Nat. Acad. Sci. USA 71, 3731 (1974).

153. Davitlers-Thiery A., Rindt T., Scheele G., Blobel G., Homology in amino terminal sequence of precursors to pancreatic secretory proteins. Proc. Nat. Acad. USA 72, 5016 (1975).

154. Goldberg A. L., St. John A. C., Intracellular protein degradation in mammalian and bacterial cells. Annu. Rev. Biochem. 45, 747 (1976).

155. Ratunuma N., New intracellular proteases and their role in intracellular enzyme degradation. Trends Biol. Sci. 2, 122 (1977).

156. Scornik O. A., Botbol V., Role of changes in protein degradation in the growth of regenerating livers. J. Biol. Chem. 251, 2891 (1976).

157. Schimke R. T., Doyle D., Control of enzyme levels in animal tissues. Annu. Rev. Biochem. 39, 929 (1970).

158. Williams-Ashman H. G., Notides A. C., Pabatan S. S., Lorand L., Transamidase reactions involved in the enzymic coagulation of semen: Isolation of y-glutamyl-ε-lysine dipeptide from clotted secretion protein of quinea pig seminal vesicle. Proc. Nat. Acad. Sci. USA 69, 2322 (1972).

159. Lorand L., Goton T., Fibrinoligase — The fibrin stabilizing factor system. Meth. Enzymol. 19, 770 (1970).

160. Decker R., Structure and synthesis of a flovoprotein with covalently bound FAD. Trends Biochem. Sci. 1, 184 (1976).

161. Acharya A. S., Taniuchi H., A study of renaturation of reduced hen egg white lysozyme. Enzymatically active intermediate formed during oxydation of the reduced protein. J. Biol. Chem, 251, 6934 (1976).

162. Acharya A. S., Taniuchi H., Formation of the four isomers of hen egg white lysozyme containing three disulfide bonds and one open disulfide bond. Proc. Nat. Acad. Sci. USA 74, 2362 (1977).

163. Jacobson M. F., Baltimore D., Polypeptide cleavages in the formation of poliovirus proteins. Proc. Nat. Acad. Sci. USA 61, 77 (1968).

164. Baltimore D., Polio is not dead. Perspect Virol. 7, 1 (1971).

165. Pappenheimer A. M., Jr., Diphtheria toxin. Annu. Rev. Biochem. 46, 69 (1977).

166. Holzer Н., Catabolite inactivation in yeast. Trends Biol. Sci. 1, 178 (1976).

167. Tager H. S., Steiner D. F., Peptide hormones. Annu. Rev. Biochem. 43, 509 (1974).

168. Stadtman E. R., Adenylyl transfer reactions. The Enzymes 8, 2 (1973).

169. Hagaishi O., Ueda K., Poly (ADP-ribose) and ADP-ribosylation of proteins. Annu. Rev. Biochem. 46, 95 (1977).

170. Stenflo J., Suttie J. W., Vitamin К-dependent formation of y-carboxyglutamic acid. Annu. Rev. Biochem. 46, 157 (1977).

171. Price P. A., Poser J. W., Raman N., Primary structure of the y-carboxyglutamic acid-containing protein from bovine bone. Proc. Nat. Acad. Sci. USA 73, 3374 (1976).

172. Lunney J., Ashwell G., A hepatic receptor of avian origin capable of binding specifically modified glycoproteins. Proc. Nat. Acad. Sci. USA 73, 341 (1976).

173. Ashwell G., Moreli A., The role of surface sarbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv. Enzymol. 41, 99 (1974).

174. Paik W. K., Kim S., Protein methylation: Chemical, enzymological and biological significance. Adv. Enzymol. 42, 227 (1975).

175. Rubin C. S., Rosen O. M, Protein phosphorylation. Annu. Rev. Biochem. 44, 831 (1975).

176. Linderström-Lang К. U., Schnellman J. A., Protein structure and enzyme activity. The Enzymes (P. D. Boyer, ed.), Ademic Press, New York, Yol. 1, 2nd ed., 1959, p. 443.

177. Anfinsen С. B., Principles that govern the folding of protein chains. Science 181, 223 (1973).

178. Moorhouse R., Winter W. T., Arnott S., Conformation and molecular organization in fibers of the capsular polysaccharide from Escherichia coli M41 mutant. J. Mol. Biol. 109, 373 (1977).

179. Arnott S., The geometry of nucleic acids. Progr. Biophys. Mol. Biol. 21, 265 (1970).

180. Stubbs G., Warren S., Holmes K., Structure of RNA and RNA binding site in tobacco mosaic virus from 4 Å map calculated from X-ray fibre diargams. Nature 267, 216 (1977).

181. Cohen C., Harrison S. O., Stephens R. E., X-ray diffraction from microtubules. J. Mol. Biol. 59, 375 (1971).

182. Moody M. F., Sheath of Bacteriophage M. J. Mol. Biol. 80, 613 (1973).

183. Perutz M. F., New X-ray evidence on the configuration of polypeptide chains. Nature 167, 1053 (1951).

184. Dickerson R- E., X-ray analysis and protein structure. The Proteins (H. Neurath, ed.), 2nd ed., Vol. 2, Academic Press, New York, 1964, p. 603.

185. Kendrew J. C., Dickerson R. E., Strandberg В. E., Hart R. G., Davies D. R., Phillips D. C., Shore V. C., Structure of myoglobin. Nature 185, 422 (1960).

186. Shulz G. E., Elzinga M., Marx F., Schirmer R. H., Threedimensional structure of adenylate kinase. Nature 250, 120 (1974).

187. Donohue J., Hydrogen-bonded helical configurations of the polypeptide chain. Proc. Nat. Acad. Sci. USA 39, 470 (1953).

188. Hendrickson W. A., Love W. E., Structure of lamprey haemoglobin. Nature New Biol. 232, 197 (1971).

189. Hendrickson W. A., Love W. E., Karle J., Crystal structure analusis of sea lamprey hemoglobin at 2 A resolution. J. Mol. Biol. 74, 331—361 (1973).

190. Low B. W.. Grenville-Wells H. J., Generalized mathematical relationships for polypeptide chain helices. The coordinates of the п. Proc. Nat. Acad. Sсi. USA 39, 785 (1953).

191. Ramachandran G. N., Kartha G., Structure of collagen. Nature 176, 593(1955).

192. Rich A., Crick F. H. C., The molecular structure of collagen. J. Mol. Biol. 3, 483 (1961).

193. Yonath A., Traub W., Polymers of tripeptides as collagen models. J. Mol Biol. 43. 461 (1969).

194. Traub W., Piez K. A., The chemistry and structure of collagen. Adv. Prot. Chem. 25, 243 (1971).

195. Boliati G., Click E. M., Hermodsen M., Bornstein P., Structure of rat skin collagen al-CB8. Amino acid sequence of the hydroxylamine-produced fragment HA2. Biochemistry 11, 3798 (1972).

196. Fietzek P. P., Rexrodt F., Hopper K., Kühn K., The covalent structrue of collagen. Eur. J. Biochem. 38, 396 (1973).

197. HulmesD. J. S., Miller A., Parry D. A. D., Piez К. A., Woodhead-Galloway J., Analysis of the primary structure of collagen for the origins of molecular packing. J. Mol. Biol. 79, 137 (1973).

198. Reid К. В. M., Porter R. R., Subunit composition and structure of subcomponent Clq of the first component of human complement. Biochem. J. 155, 19 (1976).

199. Venkatachalam С. M., Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolimers 6, 1425 (1968).

200. Crawford J. L., Lipscomb W. N., Schellman C. G., The reverse turn as a polypeptide conformation in globular proteins. Proc. Nat. Acad. Sci. USA 70, 538 (1973).

201. Chou P. Y., Fasman G. D., Conformational parameters for amino acids in helical, ß-sheet, and random coil regions calculated from proteins. Biochemistry 13, 211 (1974).

202. Lewis P. N., Momany F. A., Scheraga H. A., Chain reversals in proteins. Biochim. Biophys. Acta 303, 211 (1973).

203. Kuntz I. D., Protein-folding. J. Amer. Chem. Soc. 94, 4009 (1972).

204. Pauling L., Corey R. B., Configurations of polypeptide chains with favored orientations around single bonds: Two new pleated sheets. Proc. Nat. Acad. Sci. USA 37, 729 (1951).

205. Chothia C., Conformation of twisted ß-pleated sheets in proteins. J. Mol. Biol. 75, 295 (1973).

206. Blake C. C. F., Catley S. J., Protein—DNA and protein—hormone interactions in prealbumin: A model of the thyroid hormone nuclear receptor? Nature 268, 115 (1977).

207. Carter C., Kraut J., A proposed model for the interaction of polypeptides with RNA. Proc. Nat. Acad. Sci. USA 71, 283 (1974).

208. Church G. M., Sussman J. L., Kim S. H., Secondary structural complementarity between DNA and proteins. Proc. Nat. Acad. Sci. USA 74, 1458 (1977).

209. Richardson J. S., Getzoff E. D., Richardson D. C., The ß-bulge: A common small unit of non-repetitive protein structure. Proc. Nat. Acad. Sci. USA 75, 2574 (1978).

210. Crick F. H. C, The packing of a-helices: Simple coiled coils. Acta Crystallogr. 6, 689 (1953).

211. Fraser R. D. B., MacRae T.P., Structure of a-keratin. Nature 233, 138 (1971).

212. Parry D. A. D., Crewther W. G., Fraser R. D. В., MacRae T. P., Structure of the a-keratin: Structural implication of the amino acid sequences of the type I and type II chain segments. J. Mol. Biol. 113, 449 (1977).

213. Caspar D. L. D., Cohen C., Longley W., Tropomyosin: Crystal structure, polymorphism and molecular interactions. J. Mol. Biol. 41, 87 (1969).

214. Cohen C., Holmes К. C., X-ray diffraction evidence for a-helical coiled- coils in native muscle. J. Mol. Biol. 6, 423 (1963).

215. Huxley H. E., The mechanism of muscular contraction. Science 164, 1356 (1969).

216. Klotz I. M., Klippenstein G. L., Hendrickson W. A., Hemerythrin: Alternative oxygen carrier. Science 192, 335 (1976).

217. Stenkamp R. E., Sieker L. C., Jensen L. H., Loehr J. S., Structure of methemerythrin at 5 Å resolution. J. Mol. Biol. 100, 23 (1976).

218. Champness J. N., Bloomer A. C., Bricogne C., Butler P. J. G., Klug A., The structure of the protein disk of tobacco mosaic virus to 5 A resolution. Nature 259, 20 (1976).

219. Henderson R., Unwin P. N. T., Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28 (1975).

220. Marvin D. A., Wachtel E. J., Structure and assembly of filamentous bacterial viruses. Phil. Trans. Roy. Soc. London В 276, 81 (1976).

221. Irwin M. J., Nyborg J., Reid B. R., Blow D. M., The crystal structure of tyrosyi-transfer RNA synthetase at 2.7 Å resolution. J. Mol. Biol. 105, 577 (1976).

222. Stone D., Sedek J., Johnson P., Smillie L. B., Tropomyosin: Correlation of amino acid sequence and structure. Proc. 9th FEBS Meeting (Budapest), 31, 125 (1975).

223. Stewart M., Tropomyosin: Evidence for no stagger between chains. FEBS Lett. 53, 5 (1975).

224. Stewart M., McLachlan A. D., Structure of magnesium paracrystals of a-tropomyosin. J. Mol. Biol. 103, 251 (1976).

225. Chothia C., Levitt M., Richardson D., Structure of proteins: Packing of a-he)ices and pleated sheets. Proc. Nat. Acad. Sci. USA 74, 4130 (1977).

226. Richardson J. S., Handedness of crosssover connections in ß-sheets. Proc. Nat. Acad. Sei. USA 73, 2619 (1976).

227. Sternberg M. J. E., Thornton J. M., On the conformation of proteins: The handedness of the ß-strand — a-helix — ß-strand unit. J. Mol. Biol. 105, 367 (1976).

228. Nagano K., Logical analysis of mechanism of protein folding. IV. Supersecondary structures. J. Mol. Biol. 109, 235 (1977).

229. Rao S. T., Rossmann M. G., Comparison of super-secondary structures in proteins. J. Mol. Biol. 76, 241 (1973).

230. Moras D., Olsen K. W., Sabesan M. N., Buehner M., Ford G. C., Rossmann M. G., Studies of asymmetry in the three-dimensional structure of lobster D-glyceraldehyde-3-phosphate dehydrogenase. J. Biol. Chem. 250, 9137 (1975).

231. Biesecker G., Harris J. I., Thierry J. C., Walker J. E., Wonacott A. J., Sequence and structure of D-glyceraldehyde 3-phosphate dehydrogenase from Bacillus stearothermophilus. Nature 266, 328 (1977).

232. Rossmann M. G., Adams M. J., Buehner M., Ford G. C., Hackert M. L., Lentz P. J., Jr., McPherson A., Jr., Schevitz R. W, Smiley I. E., Structural constraints of possible mechanisms of lactate dehydrogenase as shown by high resolution studies of the apoenzyme and a variety of enzyme complexes. Cold Spring Harbor Symp. Quant. Biol. 36, 179 (1971).

233. Hill E., Tsernoglou D., Webb L., Banaszak L. J., Polypeptide conformation of cytoplasmic malate dehydrogenase from an electron density map at 3.0 Å resolution. J. Mol. Biol. 72, 577 (1972).

234. Eklund H., Nordstrom В., Zeppezauer E., Söderlund G., Ohlsson I., Boiwe T., Söderberg В. О., Tapia O., Bränden С. I., Three-dimensional structure of horse liver alcohol dehydrogenase at 2,4 Å resolution. J. Mol. Biol. 102, 27 (1976).

235. Blake С. C. F., X-ray studies of glycolytic enzymes. Essays Biochem. 11, 37 (1975).

236. Fletterick R. J., Sygusch J., Semple H., Madsen N. B., Structure of glycogen phosphorylase a at 3.0 Å resolution and its ligand binding sites at 6 Å. J. Biol. Chem. 251, 6142 (1976).

237. Burnett R. M, Darling G. D., Kendall D. S., LeQuesne M. E., Mayhew S. G., Smith W. W., Ludwig M. L., The structure of the oxidized form of clostridial flavodoxin at 1.9 Å resolution. J. Mol. Chem. 249, 4383 (1974).

238. Watenpaugh К. D., Sieker L. H., Jensen L. H., Legali J., Dubourdieu AT, Structure of the oxidized form of a flavodoxin at 2.5 Å resolition: Resolution of the phase ambiguity by anomalous scattering. Proc. Nat. Acad Sci. USA 69, 3185 (1972).

239. Drehgth J., Hot W. G. J., Jansonius J. Ah, Koeckoek R., A comparison of the three-dimensional structures of subtilisin BPN' and subtilisin novo. Cold Spring Harbor Symp. Quant. Biol. 36, 107 (1971).

240. Wright C. S., Alden R. A., Kraut J., Structure of subtilisin BPN' at 2,5 Å resolution. Nature 221, 235 (1969).

241. Matthews B. W., Remington S. J., The three-dimensional structure of the lysozyme from bacteriophage T4. Proc. Nat. Acad. Sci. USA 71, 4178 (1974).

242. Arnone A., Bier C. J., Cotton F. A., Day V. W., Hazen E. E., Jr., Richardson D. C., Richardson J. S., Yonath A., A high resolution structure of an inhibitor complex of the extracellular nuclease of Staphylococcus aureus. J. Biol. Chem. 246, 2302 (1971).

243. Shotton D. M, Watson H. C., Three-dimensional structure of tosylelastase. Nature 225, 811 (1970).

244. Stroud R. M, Kay L. M., Dickerson R. E., The structure of bovine trypsin: Electron density maps of the inhibited enzyme at 5 Å and 2.7 Å resolution. J. Mol. Biol. 83, 185 (1974).

245. Fehlhammer H., Bode W., Huber R., Crystal structure of bovine trypsinogen at 1.8 Å resolution. J. Mol. Biol. Ill, 415 (1977).

246. Dalbaere L. T. J., Hutcheon W. L. B., James M. N G., Thiessen W. E., Tertiary structural differences between microbial serine proteases and pancreatic serine enzymes. Nature 257, 758 (1975).

247. Richardson J. S., ß-sheet topology and the relatedness of proteins. Nature 268, 495 (1977).

248. Wetlaufer D. E., Nucleation, rapid folding and globular intrachain regions in proteins. Proc. Nat. Acad. Sci. USA 70, 697 (1973).

249. Levitt M., Chothia C., Structural patterns in globular proteins. Nature 261, 552 (1976).

250. Schulz G. E., Structural rules for globular proteins. Angew. Chem. Int Edit. 16, 23 (1977).

251. Hamermesh M, Group. Theory, Addison-Wesley, London, 1962.

252. Weyt H., Symmetry, Princeton University Press, Princeton, New Jersy, 1952.

253. Wright C S., Multi-domain structure of the dimeric lectin wheat germ agglutinin. International Symposium of Biomolecular Structure, Conformation, Function and Evolution, Madras, 1978.

254. Rossmann M. G., Moras D., Olsen К. W., Chemical and biological evolution of a nucleotide-binding protein. Nature 250, 194 (1974).

255. Schulz G. E., Schirmer R. H., Topological comparison of adenylate kinase with other proteins. Nature 250, 142 (1974).

256. Zappe H. A., Krohle-Ehrich G., Schulz G. E., Low resolution structure of human erythrocyte glutatione reductase. J. Mol. Biol. 113, 141 (1977).

257. Bergsma J., Ho! W. G. J., Jansonius J. N., Kalk К. H., Ploegman J. H., Smith D. G., The double domain structure of rhodanese. J. Mol. Biol. 98, 637 (1975).

258. Clegg J. C. S., Kennedy S. I. T., Initiation of synthesis of the structural proteins of semliki forest virus. J. Mol. Biol. 97, 401 (1975).

259. Blundell T., Dodson G., Hodgkin D., Mercola D., Insulin: The structure in the crystal and its reflection in chemistry and biology. Adv. Prot. Chem. 26, 279 (1972).

260. Moult J., Yonath A., Traub W., Smilansky A., Podjarny A., Rabinovich D., Saya A., The structure of triclinic lysozyme at 2.5 Å resolution. J. Mol. Biol. 100, 179 (1976).

261. Steitz T. A., Fletterick R. J., Anderson W. F., Anderson С. M., High resolution X-ray structure of yeast hexokinase, an allosteric protein exhibiting a non-symmetric arrangement of subunits. J. Mol. Biol. 104, 197 (1976).

262. Caspar D. L. D., Klug A., Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27, 1 (1962).

263. Winkler F. K., Schutt С. E., Harrison S. C., Bricogne G., Tomato bushy stunt virus at 5.5 A resolution. Nature 265, 509 (1977).

264. Liljas A., Rossmann M. G., X-ray studies of protein interactions. Annu. Rev. Biochem. 43, 475 (1974).

265. Rossmann M. G., Adams M. J., Buehner Al., Ford G. C., Hackert M. L., Liljas A., Rao S. T., Banaszak L. J., Hill E., Tsernoglou D., Webb L., Molecular symmetry axes and subunit interfaces in certain dehydrogenases. J. Mol. Biol. 76, 533 (1973).

266. Chothia C., Janin J., Principles of protein-protein recognition. Nature 256, 705 (1975).

267. Janin J., Chothia C., Stability and specifity of protein-protein interactions: The case of the trypsin-trypsin inhibitor complexes. J. Mol. Biol. 100, 197 (1976).

268. Chothia C., Wodak S., Janin J., Role of subunit interfaces in the allosteric mechanism of hemoglobin. Proc. Nat. Acad. Sci. USA 73, 3793 (1976).

269. Huber R., Kukla D., Bode W., Schwager P., Bartels K, Deisenhofer J., Steigeman W., Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. J. Mol. Biol. 89, 73 (1974).

270. Levinthal C., Wodak S. J., Kahn P., Davivanian A. K., Hemoglobin interaction in sickle cell fibers. I: Theoretical approaches to the molecular contacts. Proc Nat. Acad. Sci. USA 72, 1330 (1975).

271. Timkovich R., Dickerson R. E., Recurrence of the cytochrome fold in a nitrate-respiring bacterium. J. Mol. Biol. 79, 39 (1973).

272. Salemme F. R., Freer S. T., Xuong N. G. H., Alden R. A., Kraut J., The structure of oxidized cytochrome c2 of Rhodospirillum rubrum. J. Biol. Chem. 248, 3910 (1973).

273. Takano T., Kallai О. B., Swanson R., Dickerson R. E., The structure of farrocytochrome c at 2.45 A resolution. J. Biol. Chem. 248, 5234 (1973).

274. Frier J. A., Perutz M. F., Structure of human foetal deoxyhaemoglobin. J. Mol. Biol. 112, 97 (1977).

275. Vainshtein В. K., Harutyunuan E. H., Kuranova I. P., Borisov V. V., Sosfenov N. I., Pavlovsky A. G.. Grebenko A. I., Konareva N. V., Structure of leghaemoglobin from lupin root nodules at 5 Å resolution. Nature 254, 163 (1975).

276. Love W. E., Klock P. A., Lattmann E. E., Padlan E. A., Ward К. B., Jr., Hendrickson W. A., The structures of lamprey and bloodworm hemoglobins in relation to their evolution and function, Cold Spring Harbor Symp. Quant. Biol. 36, 349 (1971).

277. Huber R., Epp O., Steigemann W., Formaneck H., The atomic structure of erythrocruorin in the light of chemical sequence, and its comparison with myoglobine. Eur. J. Biochem. 19, 42 (1971).

278. Sasaki K., Dockerill S., Adamiak D. A., Tickle I. J., Blundell T., X-ray analysis of glucagon and its relationship to receptor binding. Nature 257, 751 (1975).

279. Drength J., Jansonius J. N., Koekoek R., Sluyterman L. A. A., Wolthers В. G., The structure of the papain molecule. Phil. Trans. Roy. Soc. London В 257, 231 (1970).

280. Colman P. M., Jansonius J. N., Matthews B. W., The structure of thermolysin: An electron density map at 2.3 Å resolution. J. Mol. Biol. 70, 701 (1972).

281. Hardman К. D., Ainsworth C. F., Structure of concanavalin A. at 2.4 Å resolution. Biochemystry 11, 4910 (1972).

282. Reeke G. N., Becker J. W., Edelman G. M., The covalent and three-dimensional structure of concanavalin A. Biol. Chem. 250, 1525 (1975).

283. Blake С. C. F., Geisow M. J., Swan I. D., Rerat C., Rerat B., Structure of human plasma prealbumin at 2.5 Å resolution. J. Mol. Biol. 88, 1 (1974).

284. Watenpaugh K. D., Sieker L. C., Herriott J. R., Jensen L. H., The structure of non-heme iron protein: Rubredoxin at 1,5 Å resolution. Cold Spring Harbor Symp. Quant. Biol. 36, 359 (1971).

285. Watenpaugh К. D., Sieker L. C., Herriott J. R., Jensen L. H., Refinement of the model of a protein: Rubredoxin at 1.5 Å resolution. Acta Crystallogr. В 29, 943 (1973).

286. Richardson J. S., Thomas R. A., Rubin В. H., Richardson D. C., Crystal structure of bovine Cu, Zn superoxide dismutase at 3 Å resolution: Chain tracing and metal ligands. Proc. Nat. Acad. Sci. USA 72, 1349 (1975).

287. Low B. W., Preston H. S., Sato A., Rosen L. S., Searl J. S., Rudko A. D., Richardson J. S., Three-dimensional structure of erabutoxin b neurotoxic protein: Inhibitor of acetylcholine receotor. Proc. Nat. Acad. Sci. USA 73, 2991 (1976).

288. Subramanian E., Swan I. D. A., Liu M., Davies D. R., Jenkins J. A., Tickle I. J., Blundell T. L., Homology among acid proteases: Comparison of crystal structures at 3 Å resolution of acid proteases from Rhizopus chinensis and Endothia parasitica. Proc. Nat. Acad. Sci. USA 74, 556 (1977).

289. Hsu I. N., Delbaere L. T. J., James M. N. G., Hofmann T., Penicillopepsin from Penicillum janthinellum crystal structure at 2.8 Å and sequence homology with porcine pepcin. Nature 266, 140 (1977).

290. Tang J., James M. N. G., Hsu I. N., Jenkins J. A., Blundell T. L., Structural evidence for gene duplication in the evolution of acid proteases. Nature 271, 618 (1978).

291. Poljak R. J., Amzel L. M., Chen B. L., Phizackerley, R. P., Saul F., The three-dimensional structure of the Fab'fragment of a human myeloma

immunoglobulin at 2.0 Å resolution. Proc. Nat. Acad. Sci. USA 71, 3440 (1974).

292. Schiffer M., Girling R. L., Ely К. R., Edmundson A. B., Structure of a λ-type Bence-Jones protein at 3.5 Å resoluton. Biochemistry 12, 4620 (1973).

293. Segal D. M., Padlan E. A., Cohen G. H., Rudikoff S., Potter M., Davies D. R., The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobuline Fab and the nature of the antigen binding site. Proc. Nat. Acad. Sci. USA 71, 4298 (1974),

294. Huber R., Deisenhofer J., Colman P. M., Matsuhima M., Palm W., Crystallographic structure studies of an IgG molecule and an Fc fragment. Nature 264, 415 (1976).

295. Liljas A., Rannan R. K., Bergstin P. C., Waara I., Fridborg K., Strandberg B., Carlbom U., Järup L., Lövgren S.. Petef M., Crystal structure of human carbonic anhydrase C. Nature New Biol. 235, 131 (1972).

296. Kannan K. R., Notstran B., Fridborg R., Lövgren S., Ohlsson A., Petef M, Crystal structure of human erythrocyte carbonic anhydrase B. Three dimensional structure at a nominal 2.2 Å resoulution. Proc. Nat. Acad. Sсi. USA 72, 51 (1975).

297. Mathews F. S., Argos P., Levine M., The structure of cytochrome b5 at 2.0 A resolution. Cold Spring Harbor Symp. 36, 387 (1971).

298. Mathews F. S., Levine M., Argos P., Three-dimensional Fourier synthesis of calf liver cytochrome b5 at 2.8 A resolution. J. Mol. Biol. 64, 449 (1972).

299. Carter C. W., Jr. Kraut J., Freer S. T., Xuong N. H., Alden R. A., Bartsch R. G., Two-Angstrom crystal structure of oxidized Chromatium high potential iron protein. J. Biol. Chem. 249, 4212 (1974).

300. Blake С. C. F., Koenig D. F., Mair G. A., North A. С. T., Philips D. C., Sarma V. R., Structure of hen egg-white lysozyme. Nature 206, 757 (1965).

301. Kartha G., Bello J., Harker D., Tertiary structure of ribonuclease. Nature 213, 862 (1967).

302. Carlisle С. H., Palmer R. A., Mazumdar S. K., Gorinsky B. A., Yeates D. G. R., The structure of ribonuclease at 2.5 Å resolution. J. Mol. Biol. 85, 1 (1974).

303. Fenna R. E., Natthews B. W., Chlorophill arrangement in a bacteriochlorophill protein from Chlorobium limicola. Nature 258, 573 (1975).

304. Holmgren A., Söderberg В. О., Eklund H., Bränden C. I., Three-dimensionаl structure of Escherichia coli thioredoxin-S2, to 2.8 Å resolution. Proc. Nat. Acad. Sci. USA 72, 2305 (1975).

305. Banner D. W., Bloomer A. C., Petsko G. A., Phillips D. C., Pogson C. I., Wilson I. A., Corran P. H., Furth A. J., Milman J. D., Offord R. E., Priddle J. D., Waley S. G., Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 Å resolution using amino acid sequence data. Nature, 255, 609 (1975).

306. Mavridis I. M., Tulinsky A., The folding and quaternary structure of trimeric 2-keto-3-deoxy-6-phosphogluconic aldolase at 3.5 Å resolution. Biochemistry 15, 4410 (1976).

307. Campbell J. W., Watson H. C., Hodgson G. L., Structure of yeast phosphoglycerate mutase. Nature 250, 301 (1974).

308. Matthews D. A., Alden R. A., Bolin J. T., Freer S. T., Hamlin R., Xuong M., Kraut J., Poe M., Williams M., Hoogsteen K., Dihydrofolate reductase: X-ray structure of the binary complex with methotrexate. Science 197, 452 (1977).

309. Quiocho F. A., Gilliland G. L., Phillips G. N., The 2.8 Å resolution structure of the L-arebinose binding protein from E. coli. J. Biol. Chem. 252, 5142 (1977).

310. Blake С. C. F., Evans P. R., Structure of horse muscle phosphoglycerate kinase. J. Mol. Biol. 84, 585 (1974).

311. Bryant T. N., Watson H. C., Wendell P. L., Structure of yeast phosphoglycerate kinase. Nature. 247, 14 (1974).

312. Levine M., Muirhead H., Stammers D. K., Stuart D. I., Structure of pyruvate kinase and similarities with other enzymes: Possible implications for protein taxonomy and evolution. Nature 271, 626 (1978).

313. Shaw P. J., Muirhead H., Crystallographic structure analysis of glucose 6-phosphate isomerase at 3.5 Å resolution. J. Mol. Biol. 109, 475 (1977).

314. Adman E. T., Sieker L. C., Jensen L. H., The structure of a bacterial ferredoxin. J. Biol. Chem. 248, 3987 (1973).

315. Drenth J., Enzing С. M., Kalk К. H., Vessies C. A., Structure of porcine pancreatic prephospholipase A2. Nature 264, 373 (1976).

316. Wright С. S., The crystal structure of wheat germ agglutinine at 2.2 Å resolution. J. Mol. Biol. Ill, 439 (1977).

317. Knox J. R., Wyckoff H. W., A crystallographic study of alkaline phosphatase at 7.7 Å resolution. J. Mol. Biol. 74, 533 (1973).

318. Adams M. J., Helliwell J. R., Bugg С. H., Structure of 6-phosphogluconate dehydrogenase from sheep liver at 6 Å resolution. J. Mol. Biol. 112, 183 (1977).

319. Warren S. G., Edwards B. F. P., Evans D. R., Wiley D. C., Lipscomb W. N., Aspartate transcarbamoylase from Escherichia coli: Electron density at 5.5 A resolution. Proc. Nat. Acad. Sci. USA 70, 1117 (1973).

320. Hoare R. J., Harrison P. M., Hoy T. G., Structure of horse-spleen apoferritin at 6 Å resolution. Nature 255, 653 (1975).

321. Perutz M. F., Muirhead H., Cox J. M., Goamon L. C. G., Three-dimensionаl Fourier synthesis of horse oxyhaemoglobin at 2.8 Å resolution: The atomic model. Nature 219, 131 (1968).

322. Bolton W., Perutz M. F., Three dimensional Fourier synthesis of horse deoxyhaemoglobin at 2.8 Å resolution. Nature 288, 551 (1970).

323. Srinivasan R., Helical length distribution from protein crystallographic data. Ind. J. Biochem. Biophys. 13, 192 (1976).

324. Johnson С. N., Oak Ridge Nat. Lab Report-5138 ORTEP-II: A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations, 1976.

325. Trus B. L., Piez К. A., Molecular packing of collagen: Three-dimensional analysis of electrostatic interactions. J. Mol. Biol. 108, 705 (1976).

326. Lewis P. W., Momany F. A., Scheraga H. A., Folding of polypeptide chains in proteins: A proposed mechanism for folding. Proc. Nat. Acad. Sci. USA 68, 2293 (1971).

327. Sternberg M. J. E., Thornton J. M., On the conformation of proteins: An analysis of β-pleated sheets. J. Mol. Biol. 110, 285 (1977).

328. Blout E. R., de Loże C., Bloom S. M., Fasman G. D., The dependence of the conformation of the synthetic polypeptides on amino acid composition. J. Amer. Chem. Soc. 82, 3787 (1960).

329. Davies D. R., A correlation between amino acid composition and protein structure. J. Mol. Biol. 9, 605 (1964).

330. Jirgensons B., Optical Rotary Dispersion of Proteins and Other Macromolecules. Springer-Verlag, Heidelberg, 1969.

331. Guzzo A. V., The influence of amino acid sequence on protein structure. Biophys. J. 5, 809 (1965).

332. Prothero J. W., Correlation between the distribution of amino acids and alpha helices. Biophys. J. 6, 367 (1966).

333. Havensteen, A study of the correlation between the amino acid composition and the helical content of proteins. J. Theor. Biol. 10, 1 (1966).

334. Cook D. A., The relation between amino acid sequence and protein conformation. J. Mol. Biol. 29, 167 (1967).

335. Periti P. R., Guagliarotti G., Liquori A. M., Recognition of a-helical segments in protein of known primary structure. J. Mol. Biol. 24, 313 (1967).

336. Dunnill P., The use of helical net-diagrams to represent protein structures. Biophys. J. 8, 865 (1968).

337. Low B. W., Lowell F. M., Rudko A. D., Prediction of a-helical regions in proteins of known sequence. Proc. Nat. Acad. Sci. USA 60, 1519 (1968).

338. Dirkx J. Une methode semi-empirique de prediction des regions L-helicoidales des chalnes polypeptidiques d’apres leur structure primaire. Arch. Int. Physiol. Biochim. 80, 185 (1972).

339. Beghin F., Dirkx J., Une methode statistique simple de prediction des conformations proteiques. Arch. Int. Physiol. Biochim. 83, 167 (1975).

340. Chou Р. Y., Fasman G. D., Prediction of protein conformation. Biochemistry 13, 222 (1974).

341. Птицын О. Б., Финкельштейн А. В. Предсказание спиральных участков глобулярных белков по их первичной структуре. Докл. АН СССР 195, 221 (1970).

342. Птицын О. Б., Финкельштейн А. В. Связь между вторичной и первичной структурами глобулярных белков. Биофизика 15, 757 (1970).

343. Finkelstein А. V., Ptitsyn О. В., Statistical analysis of the correlation among amino acid residues in helical, ß-structural and non-regular regions of globular proteins. J. Mol. Biol. 62, 613 (1971).

344. Periti P. F., A Bayesian approach to the recognition of discrete patterns with an applications to a problem of protein molecular structure. Bull. Chim. Farm. 113, 187 (1974).

345. Pain R. H., Robson B., Analysis of the code relating sequence to secondary structure in proteins. Nature 227, 62 (1970).

346. Robson B., Pain R. H., Analysis of the code relating sequence to conformation in proteins: Possible implications for the mechanism of formation of helical regions. J. Mol. Biol. 58, 237 (1971).

347. Robson B., Analysis of the code relating sequence to conformation in globular proteins. Theory and application of expected information. Biochem. J. 141, 853 (1974).

348. Robson B., Pain R. H. Analysis of the code relating sequence to conformation in globular proteins. Development of a stereochemical alphabet on the basis of intraresidue information. Biochem. J. 141, 869 (1974).

349. Robson B., Pain R. H., Analysis of the code relating sequence to conformation in globular proteins. An informational analysis of the role of the residue in determining the conformation of its neighbours in the primary sequence. Biochem. L. 141, 883 (1974).

350. Robson B., Pain R. H., Analysis of the code relating sequence to conformation in globular proteins. The distribution of residue pairs in turns and kinks in the backbone chain. Biochem. J. 141, 899 (1974).

351. Robson B., Suzuki E., Conformational properties of amino acid residues in globular proteins. J. Mol. Biol. 107, 327 (1977).

352. Suzuki E., Robson B., Relationship between helix-coil transition parameters for synthetic polypeptides and helix conformation parameters for globular proteins. A simple model. J. Molec. Biol. 107, 357 (1977).

353. Nagano K., Logical analysis of mechanism of protein folding. I. Predictions of helices, loops and ß-structures from primary structure. J. Mol. Biol. 75 401 (1973).

354. Nagano K., Logical analysis of mechanism of protein folding. II. The nucleation process. J. Mol. Biol. 84, 337 (1974).

355. Nagano K., Hasegawa K-, Logical analysis of mechanism of protein folding. III. Prediction of the strong long-range interactions. J. Mol. Biol. 94, 257 (1975).

356. Nagano K., Triplet information in helix prediction applied to the analysis of supersecondary structures. J. Mol. Biol. 109, 251 (1977).

357. Kabat E. A., Wu T. T., The influence of neighbor amino acids on the conformation of the middle amino acid in proteins. Comparision of predicted and experimental determination of ß-sheets in concanavalin A. Proc. Nat. Acad. Sci. USA 70, 1473 (1973).

358. Kabat E. A., Wu T.T., The influence of nearest-neighboring amino acid residues on aspects of secondary structure of proteins. Attempts to locate a- helices and ß-sheets. Biopolymers 12, 751 (1973).

359. Kabat E. A., Wu T. T., Further comparison of predicted and experimentally determined structure of adenylate kinase. Proc. Nat. Acad. Sci. USA 71, 4217 (1974).

360. Wu T. T., Rabat E. A., An attepmt to locate the non-helical and permissively helical sequences of proteins: Application to the variable regions of immunoglobulin light and heavy chains. Proc. Nat. Acad. Sci. USA 68, 1501 (1971).

361. Kabat E. A., Wu T. T., Constraction of a three-dimensional model of the polypeptide backbone of the variable region of kappa immunoglobulin light chains. Proc. Nat. Acad. Sci. USA 69, 960 (1972).

362. Wu T. T., Kabat E. A., An attempt to evaluate the influence of neighboring amino acids (n — 1) and (n + 1) on the backbone conformation of amino- acid (n) in proteins. Use in predicting the threedimensional structure of the polypeptide backbone of other proteins. J. Mol. Biol. 75, 13 (1973).

363. Kotelchuck D., Scheraga H. A., The influence of shortrange interactions on protein conformation. I. Side chainbackbone interactions within a single peptide unit. Proc. Nat. Acad. Sci. USA 61, 1163 (1968).

364. Kotelchuck D., Scheraga H. A., The influence of shortrange interactions on protein conformation. II. A model for predicting the а-helical regions of proteins. Proc. Nat. Acad. Sci. USA 62, 14 (1969).

365. Leberman R., Secondary structure of tobacco mosaic virus protein. J. Mol, Biol. 55, 23 (1971).

366. Burgess A. W., Schegara H. A., Assessment of some problems associated with prediction of the three-dimentional structure of a protein from its amino- acid sequence. Proc. Nat. Acad. Sci. USA 72, 1221 (1975).

367. Ponnuswamy P. K., Warme P. K-, Scheraga H. A., Role of medium-range- interactions in proteins. Proc. Nat. Acad. Sei. USA, 70, 830 (1973).

368. Lewis P. N., Go N., Go M., Kotelchuck D., Scheraga H. A., Helix probability profiles of denatured proteins and their correlation with native structures. Proc. Nat. A cad. Sci. USA 65, 810 (1970).

369. Lewis P. N., Scheraga H. A., Predictions of structural homologies in cytochrome c proteins. Arch. Biophys. Biochem. 144, 576 (1971).

370. Ptitsyn О. B., Denesyuk A. I., Finktlstein A. V., Lim V. I., Prediction of the secondary structure of the L7, L12 proteins of the E. coli ribosome. FEBS Lett. 34, 55 (1973).

371. Finkelstein A. V., Ptitsyn O. B., A theory of protein molecule self-organization. IV. Helical and irregular local structures of unfolded protein chains, J. Mol. Biol. 103, 15 (1976).

372. Finkelstein A. V., Ptitsyn O. B., Theory of protein molecule self-organisation. I. Thermodynamic parameters of local secondary structures it the infolded protein chain. Biopolymers 16, 469 (1977).

373. Finkelstein A. V., Ptitsyn O. B., Kozitsyn S. A., Theory of protein molecule self-organisation. II. A comparison of calculated thermodynamic parameters of local secondary structures with experiments. Biopolymers 16, 497 (1977).

374. Finkelstein A. V., Theory of protein molecule self-organisation. III. A calculating method for the probabilities of the secondary structure formation in- an unfolded polypeptide chain. Biopolymers 16, 525 (1977).

375. Lifson S., Roig A., On the theory of helix-coil transitions in polypeptides. J. Chem. Phys. 34, 963 (1961).

376. Schiffer M., Edmundson A. B., Use of helical wheels to represent the structures of protein and to identify segments with helical potential. Biophys. J. 7, 121 (1967).

377. Schiffer M., Edmundson A. B., Correlation of amino acid sequence and conformation in tobacco mosaic virus. Biophys. J. 8, 29 (1968).

378. Palau J., Puigdomenech P., The structural code for proteins: Zonal distribution of amino acid residues and stabilisation of helices by hydrophobic triplets. J. Mol. Biol. 88, 457 (1974).

379. Lim V. L., Structural principles of the globular organisation of protein chains. A stereochemical theory of globular protein secondary structure. J. Mol, Biol. 88, 857 (1974).

380. Lim V. I., Algorithms for prediction of a-helical and ß-structural regions in globular proteins. J. Mol. Biol. 88, 873 (1974).

381. Argos P., Schwarz J., Schwarz J., An assessment of protein secondary structure prediction methods based on amino acid sequence. Biochem. Biophys. Acta. 439, 261 (1976).

382. Lenstra J. A., Evaluation of secondary structure prediction in proteins. Biochim. Biophys. Acta 491, 333 (1977).

383. Schulz G. E., Barry C. D., Friedman J., Chou P. Y., Fasman G. D., Finkelstein A. V., Lim V. I., Ptitsyn O. A., Kabat E. A., Wu T. T., Levitt M., Robson B., Nagano K., Comparison of predicted and experimentally determined secondary structure of adenylate kinase. Nuture 250, 140 (1974).

384. Matthews B. W., Comparison of predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 405, 442 (1975).

385. Lenstra J. A., Hofsteenge J., Beintema J. J., Invariant features of the structure of pancreatic ribonuclease. J. Mol. Biol. 109, 185 (1977).

386. Wooton J. C., The coenzyme binding domains of glutamate dehydrogenases. Nature 252, 542 (1974).

387. Schulz G. E., Recognition of phylogenetic relationship from polypeptide chain fold similarities. J. Mol. Evol. 9, 339 (1977).

388. Argos P., Secondary structure predictions of calcium-binding proteins. Biochemistry 16, 665 (1977).

389. Heil A. F., Müller G., Noda L., Pinder T., Schirmer H., Schirmer I., von Zabern I., The amino-acid sequence of porcine adenilate kinase from skeletal muscle. Eur. J. Biochem. 43, 131 (1974).

390. Protein Data Bank, Department of Chemistry, Brookhaven National Laboratory, Associated Universities, Inc., Upton, L. I., New York 1973.

391. Kendrew — Watson Models, Cambridge Repetition Engineers, Ltd., Green’s Road, Cambridge, England.

392. Richards F. M., The matching of physical models to three-dimensional electron-density maps: A simple optical device. J. Mol. Biol. 37, 225 (1968).

393. Bvron’s Bender, Charles Supper Co., 15 Tech Circle, Natick, Massachusetts 01760.

394. Nicholson Models, Labquip Ltd. 18 Rosehill Park Estate, Caversham, Reading RG4 8XE, England.

395. CPK-models, The Ealing Corporation, South Natick, Massashusetts 01760.

396. Lee B., Richards F. M., The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol. 55, 379 (1971).

397. Evans and Sutherland, 580 Arpeen Drive, Salt Lake City, Utah 84108.

398. Diamond R., Bilder: A computer graphics program for biopolymers. International Symposium of Biomolecular Structure, Conformation, Function and Evolution, Madras, 1978.

399. Feldmann R. J., Porter T. K., Div. Computer Research and Technology National Institutes of Health, Bethesda, Maryland 20014 (1978).

400. Stereo viewer, Abrams Instr. Corp. 606 East Shiawassee Street, Lansing, Michigan 48901.

401. AMSOM, Tracor Jitco Inc., 1776 E. Jefferson St., Rockville, Maryland 20852.

402. Balasubramanian R., New type of representation for mapping chain-folding in protein molecules. Nature 266, 856 (1977).

403. Srinivasan R., Balasubramanian R., Rajan S. S., Some new methods and general results of analysis of protein crystallographic structural data. J. Mol. Biol. S8, 739 (1975).

404. Levitt W., Warshell A., Computer simulation of protein folding. Nature 253, 694 (1975).

405 Balasubramanian R., A new type of representation of dipeptide conformation. Biochem. J. 157, 769 (1976).

406. Kuntz I. D., An approach to the tertiary structure of globular proteins. J. Amer. Chem. Soc. 97, 4362 (1975).

407. Rossmann M. G., Liljas A., Recognition of structural domains in globular proteins. J. Mol. Biol. 85, 177 (1974).

408. Kabat E. A., Wu T. T., Bilofsky H. Variable Regions of Immunoglobulin Chains. Bolt Beranck and Newman, Cambridge, Massachusetts.

409. Behrens P. G., Spiekerman A. M., Brown J. B., Structure of human serum albumin. Fed. Proc. 34, 2106 (1974).

410. Gutte B., Merrifield R. B., The total synthesis of an enzyme with-ribonuclease A activity. J. Amer. Chem. Soc. 91, 501 (1969).

411. Hirschmann R., Nutt R. F., Veber D. F., Vitati R. A., Varga S. L., Jacob T. A., Holly F. W., Denkewalter R. G., Studies on the total synthesis of an enzyme. V. The preparation of enzymically active material. J. Amer. Chem. Soc. 91, 507 (1969).

412. Anfinsen C. B., Haber E., Sela M., White F. H., Jr., The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Nat. Acad. Sci. USA 47, 1309 (1961).

413. Pase C. N., The stability of globular proteins. CRC Crit. Rev. Biochem. 3, 1 (1975).

414. Hvidt A., Nielsen S. O., Hydrogen exchange in proteins. Adv. Prot. Chem. 21, 287 (1966).

415. Ottesen M., Methods for measurement of hydrogen isotope exchange in globular proteins. Meth. Biochem. Anal. 20, 135 (1971).

416. Nakanishi M., Tsuboi M., Ikegami A., Fluctuation of the lysozyme structure. J. Mol. Biol. 70, 351 (1972).

417. Privalov P. L. Khechinashvili N. N., A thermodynamic approach to the problem of stabilization of globular protein structure: A calorimetric study. J. Mol. Biol. 86, 665 (1974).

418. Sachs D. H., Schechter A. N., Eastlake A., Anfinsen С. B., An immunologic approach to conformational equilibria of polypeptides. Proc. Nat. Acad. Sei. USA 69, 3790 (1972).

419. Cooper A., Thermodynamic fluctuations in protein molecules. Proc. Nat. Acad. Sei. USA 73, 2740 (1976).

420. Calten H. B., Thermodynamics. John Wiley, New York, 1960.

421. Privalov P. L., Thermal investigations of biopolymer solutions and scanning microcalorimetry. FEBS Lett. Suppl. 40, 140 (1974).

422. Suurkuusk J., Specific heat measurements on lysozyme, chymotrypsinogen, and ovalbumin in aqueous solution and in solid state. Acta Chem. Scand. B28, 409 (1974).

423. Hetzet R., Wüthrich K., Deisenhofer J., Huber R., Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor (BPTI). II. Semi-empirical energy calculations. Biophys. Struct. Mech. 2, 159 (1976).

424. Wagner G., DeMarco A., Wüthrich К, Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor (BPTI). I. 1H-NMP studies. Biophys. Struct. Mech. 2, 139 (1976).

425. Campbell I. D., Dobson С. M., Williams R. J. P., Proton magnetic resonance studies of the tyrosine residues of hen lysozyme-assignment and detection of conformational mobility. Proc. R. Soc. London Ser. B. 189. 503 (1975).

426. Allerhand A., Doddrell D., Glushko V., Cochran D., Wenkert E-, Lawson P., Gurd F., Conformation and segmental motion of native and denatured ribonuclease A in solution. Application of natural-abundance carbon-13 partially relaxed Fourier transform nuclear magnetic resonance. J. Amer. Chem. Soc. 93, 544 (1971).

427. Oster O., Niereiter G. W., Clouse A. O., Gurd F. R. N., Deuterium nuclear magnetic resonance of deuterium-labeled diacetyldeuterohemin incorporated into sperm whale myoglobin. J. Biol. Chem. 250, 7990 (1975).

428. Lakowicz J. R., Weber G., Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 12, 4171 (1973).

429. Eftink M. R., Ghiron C. A., Dynamics of a protein matrix revealed by fluorescence quenching. Proc. Nat. Acad. Sci. USA 72, 3290 (1975).

430. Grinvald A., Steinberg I. Z., Fast relaxation processes in a protein revealed by the decay kinetics of tryptophan fluorescence. Biochemistry 13, 5170 (1974).

431. Saviotti M. L., Galley W. C., Room temperature phosphorescence and the dynamic aspects of protein structure. Proc. Nat. Sci. USA 71, 4154 (1974).

432. Careri G., Faselle P., Gratton P., Gratton E., Statistical time events in enzymes: A physical assessment. CRC Crit. Rev. Biochem. 3, 141 (1975).

433. Epstein C. J., Goldberger R. F., Anfinsen С. B., The genetic control of tertiary protein structure: Studies with model systems. Cold Spring Harbor Symp. Quant. Biol. 27, 349 (1963).

434. Wetlaufer D. B., Ristow S., Aquisition of three-dimensional structure of proteins. Annu. Rev. Biochem. 42, 135 (1973).

435. Haber E., Anfinsen С. B., Side-chain interactions governing the pairing of half-cystine residues in ribonuclease. J. Biol. Chem. 237, 1839 (1962).

436. Sela M., Lifson S., On the reformation of disulphide bridges in proteins. Biochim. Biophys. Acta 36, 471 (1959).

437. Kauzmann W., In: Sulfur in Proteins (R. Benesch, P. D. Boyer, J. M. Klotz, W. R. Middlebrook, A. Szent-Györgyi and Schwartz, eds.), p. 93. Academic press, New York, 1959.

438. Epstein H. F., Schechter A. N., Chen R. F., Anfinsen С. B., Folding of staphylococcal nuclease: Kinetic studies of two processes in acid renaturation. J. Mol. Biol. 60, 499 (1971).

439. Shen L. L., Hermans J., Jr., Kinetics of conformation change of sperm-whale myoglobin. I. Folding and unfolding of metmyoglobin following pH jump. Biochemistry 11, 1836 (1972).

440. Hagerman P. J., Baldwin R. L., A quantitative treatment of the kinetics of the folding transition of ribonuclease A. Biochemistry 15, 1462 (1976).

441. Anson M. L., Protein denaturation and the properties of protein groups. Adv. Prot. Chem. 2, 361 (1945).

442. Steiner D. F., Oyer P., The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma. Proc. Nat. Acad. Sei. USA 57, 473 (1967).

443. Steiner D. F., Clark J. L. The spontaneous reoxidation of reduced beef and rat proinsulins. Proc. Nat. Acad. Sci. USA 60, 622 (1968).

444. Varandani P., Shroyer L. A., Insulin degradation. Biochim. Biophys. Acta 320, 249 (1973).

445. Friedmann M. E., Scheraga H. A., Goldberg R. F., Structural studies of ribonuclease. XXVI. The role of tyrosine 115 in the refolding of ribonuclease. Biochemistry 5, 3770 (1966).

446. Zabin I., Villarejo M. R., Protein complementation. Annu. Rev. Biochem. 44, 295 (1975).

447. Baldwin R. L., Intermediates in protein folding reactions and the mechanism of protein folding. Annu. Rev. Biochem. 44, 453 (1975).

448. Garel J. R., Baldwin R. L., Both the fast and slow refolding reactions of ribonuclease A yield native enzyme. Proc. Nat. Acad. Sci. USA 70, 3347 (1973).

449. Garel J. R., Nall В. T., Baldwin R. L., Guanidine-unfolded state of ribonuclease A contains both fast- and slaw-refolding species. Proc. Nat. Acad. USA 73, 1853 (1976).

450. Garel J. R., Baldwin R. L., The heat-unfolded state of ribonuclease A is an equilibrium mixture of fast and slow refolding species. J. Mol. Biol. 94, 611 (1975).

451. Creighton Т. Е., Energetics of folding and unfolding of pancreatic trypsin- inhibitor. J. Mol. Biol. 113, 295 (1977). (См. также более ранние работы в этом журнале.)

452. Brandts J. F., Helvorson Н. R., Brennan M., Consideration of the possibility that the slow step in protein denaturation reactions is due to cistrans isomerism of protine residues. Biochemistry 14, 4953 (1975).

453. Furie В., Schechter A. N., Sachs D. H., Anfinsen С. B., An immunological approach to the conformational equilibrium of staphylococcal nuclease. J. Mol. Biol. 92, 497 (1975).

454. Curd J. G., Schechter A. N., Anfinsen С. B., Isolation of antibodies specific for a helical region of staphylococcal nuclease by affinity chromatography with synthetic polypeptides. Fed. Proc. 34, 550 (1975).

455. Flory P. J., Theory of elastic mechanisms in fibrous proteins. J. Amer. Chem. Soc., 78, 5222 (1956).

456. Nakajiama A., Scheraga H. A., Thermodinamic study of shrinkage and of phase equilibrium under stress in films made from ribonuclease. J. Amer. Chem. Soc. 83, 1575 (1961).

457. Creighton T. E., The single-disulphide intermediates in the refolding of reduced pancreatic trypsin inhibitor. J. Mol. Biol. 87, 603 (1974).

458. Creighton T. E., Kinetics of refolding of reduced ribonuclease. J. Mol. Biol, 113, 329 (1977).

459. Flantgan R. R., Hammes G. G., Scheraga H A., Pathways of folding of reduced bovine pancreatic ribonuclease. Biochemistry 13, 3421 (1974).

460. Anderson W. L., Wetlaufer D. B., The folding pathway of reduced lysozyme. J. Biol. Chem. 251, 3147 (1976).

461. Schechter A. N., Epstein C. J., Spectral studies on the denaturation of myoglobin. J. Mol. Biol. 35, 567 (1968).

462. Stellwagen E., Rysavy R., Babul G., The conformation of horse heart apocytochrome c. J. Biol. Chem. 247, 8074 (1972).

463. Fischer W., Taniuchi H., Anfinsen C. B., On the role of heme in the formation; of the structure of cytochrome c. J. Biol. Chem. 248, 3188 (1973).

464. Light A., Taniuchi H., Chen R. F., A kinetic study of the complementation of fragments of staphylococcal nuclease. J. Biol. Chem. 249, 2285 (1974).

465. Taniuchi H., Bohnert J. L., Parker D. S., The strengthening of cooperative interactions in the structure of nuclease T' by binding of ligands. Fed. Proc. 33, 1589A (1974).

466. Bornmann L., Hess B., Zimmermann-Telschow H., Mechanism of renaturation of pyruvate kinase of S. carlsbergensis: Activation by L-valine and magnesium and mangenese ions. Proc. Nat. Acad. Sci. USA 71, 1525 (1974).

467. Hess B., Bornmann L., Control of enzyme activity through gerulation of three-dimensional structure of proteins: Studies on pyruvate kinase. Adv. Enz. Reg. 13, 235 (1975).

468. Hatfield G. W., Burns S. O., Ligand-induced maturation of threonine deaminase. Science 167, 75 (1970).

469. Alpers J. B., Paulus H., Bazylawicz G. A., ATP-catalyzed preconditioning of phosphofructokinase. Proc. Nat. Acad. Sci. USA 68, 2937 (1971).

470. Ptitsyn O. B., Rashin A. A., A model of myoglobin self-organisation Biophys. Chem. 3, 1 (1975).

471. Warshel A., Levitt M., Folding and stability of helical proteins: Carp myogen. J. Mol. Biol. 106, 421 (1976).

472. Paulus H., Alpers J. B., Preconditioning: An obligatory step in the biosynthesis of oligomeric enzymes and its promotion by allosteric ligands. Enzyme 12, 385 (1971).

473. Dickerson R. E., Energy and evolution in the folding of proteins. In: Molecular evolution and Polymorphism (M. Kimura, ed.), National Institute of Genetics, Mishima, Japan, 1977.

474. Dayhoff М. О., The origin and evolution of protein superfamilies. Fed. Proc. 35, 2132 (1976).

475. Britten R. J., Davidson E. H., DNA sequence arrangement and preliminary evidence on its evolution. Fed. Proc. 35, 2151 (1976).

476. Rohne D. E., Evolution of higher-organism DNA. Quart. Rev. Biophys. 3, 327 (1970).

477. Cowan N. J., Secher D. S., Milstein C., Purification and sequence analysis of the mRNA coding for an Ig heavy chains. Eur. J. Biochem. 61, 355 (1976).

478. Rimura M., Evolutionary rate at the molecular level. Nature 217, 624 (1968).

479. Rimura M., The rate of molecular evolution considered from the standpoint of population genetics. Proc. Nat. Acad. Sci. USA 63, 1181 (1969).

480. Rimura M., Ohta T., On some principles governing molecular evolution. Proc. Nat. Acad. Sci. USA 71, 2848 (1974).

481. Harris H., Molecular evolution: The neutralist-selectionist controversy. Fed. Proc. 35, 2079 (1976).

482. Thoday J. M., Non-Darwinian evolution and biological progress, Nature 255, 675 (1975).

483. Fitch W. M., Langley С. H., Protein evolution and the molecular clock. Fed. Proc. 35, 2092 (1976).

484. Salser W., Bowen S., Browne D., F. El. Adli., Fedoroff N., Fry R., Heindell H., Paddock G., Poon R., Wallace B., Whitcome F., Investigation of the organisation of mammalian chromosomes at the DNA sequence level. Fed. Proc. 35, 23—35 (1976).

485. Marrotta C. A., Forget B. G., Weissmann S. M., Verma I. M., McCaffrey R. P., Baltimore D., Nucleotide sequences of human globin messenger RNA. Proc. Nat. Acad. Sci. USA 71, 2300 (1974).

486. Grunstein M., Schedl P., Redes L., Sequence analysis and evolution of sea urchin (Lytechinus pictus and Strongylocentrotus purpurratus) histone H4 messenger RNA s. J. Mol. Biol. 104, 351 (1976).

487. Weinberg E. S., Birnstiel A4. L., Purdom I. F., Williamson R. Genes coding for polysomal 9S RNA of sea urchins: Conservation and divergence. Nature 240, 225 (1972).

488. Barnard E. A., Cohen A4. S., Gold M. H., Jae-Ryoung R., Evolution of ribonuclease in relation to polypeptide folding mechanism. Nature 240, 395 (1972).

489. Ring J. L., Progress in the neutral mutation-random drift controversy. Fed. Proc. 35, 2087 (1976).

490. Hartley B. S., Homologies in serine proteases. Phil. Trans. Roy. Soc. London, Ser. В 257, 77 (1970).

491. Levy P. L., Pangburn M. R., Burstein Y., Ericsson L. H., Neurath H., Walsh R. J., Evidence of homologous relationship between thermolysis and neutral protease A of Bacillus subtilis. Proc. Nat. Acad. Sci. USA 72, 4341 (1975).

492. Hochachka P. W., Why study proteins of abyssal organisms? Comp. Biochem. Physiol. 52, В supplement (1975).

493. Carrell R. W., Lehmann H., Lorkin P. A., Raik E., Hunter E., Haemoglobin Sydney: ß67 valin alanin: An emerging pattern of unstable haemoglobins. Nature 215, 626 (1967).

494. Perutz A4. F., Lehmann H., Molecular pathology of human haemoglobin. Nature 219, 902 (1968).

495. Takano T., Truś B. L., Mandel N., Mandel G., Rallai T. B., Swanson R., Dickerson R. E., Tuna cytochrome c at 2.0 Å resolution. J. Biol. Chem. 252,. 776 (1977).

496. Ohno S. Ancient linkage groups and frozen accidents. Nature 244, 259 (1973).

497. Smyth D. G., Constructing semisynthetic polypeptides, (editorial) Nature 256, 699 (1975).

498. Rees A. R., Off ord R. E., The semisynthesis of portions of hen’s egg lysozyme by fragments condensation. Biochem. J. 159, 487 (1976).

499. Gutte B., Shortened ribonuclease A; Conformational and mechanistic aspects. Xth Int. Congr. Biochem. (Hamburg), Proceedings. Abstr. 4-6-376 (1976).

500. Ptitsyn О. B., Invariant features of globin primary structure and coding of their secondary structure. J. Mol. Biol. 88, 287 (1974).

501. Warme P. R., Momany F. A., Rumball S. V., Tuttle R. W., Scheraga H. A., Computation of structures of homologous proteins. Alphalactalbumin from lysozyme. Biochemistry 13, 768 (1974).

502. Margoliash E., Primary structure and evolution of cytochrome c. Proc. Nat. Acad. Sci. USA 50, 672 (1933).

503. Smith E. L., Margoliash E., Evolution of cytochrome c. Fed. Proc. 23, 1243 (1964).

504. Fitch W. M., Margoliash E., Construction of phylogenetic trees. Science 155, 279 (1967).

505. Nolan C., Margoliash E., Comparative aspects of primary structures of proteins. Annu. Rev. Biochem. 37, 727 (1968).

506. Smith E. L., Evolution of enzymes. The Enzymes 1, 267 (1970).

507. Reiner A. M., Genes for ribitol and D-arabitol catabolism in Escherichia coli: Their loci in C strains and absence in K-12 and В strains. J. Bacteriol. 123, 530 (1975).

508.Hartley B. S., Altossar I., Dothie J. M. Neuberger M. S., Experimental evolution of a xylitol dehydrogenase. In: Structure Function Relatioships of Proteins (R. Markham, R. W. Horne, eds.), pp. 191, North Holland, Amsterdam, New York, 1976.

509. Dickerson R. E., Timkevich R., Cytochrome c. The Enzymes 11, 397 (1975).

510. Hunt L. T., Dayhoff M. O., Globins. Atlas of Protein Sequences 5, suppl., 191 (1976).

511. Garstang W., Preliminary note on the new theory of the phylogeny of the chordata. Zool. Ahz. 17, 122 (1894).

512. Watts D. C., Evolution of phoshagen kinases. In: Molecular Evolution (E. Schoffeniels, ed.), Vol. 2, pp. 150—173, North Holland, Amsterdam, New York, Oxford, 1971.

513. Dayhoff M. O., Computer analysis of protein evolution. Sci. Amer. Juli, 86 (1969).

514. Ring M.-С., Wilson A. S., Evolution at two levels in humans and chimpanzees. Science 188, 107 (1975).

515. Wilson A. C., Maxson L. R., Sarich V. M., Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proc. Nat. Acad. Sci USA 71, 2843 (1974).

516. Wilson A. C., Evolutionary importance of gene regulation. Studier Symp. 7, 117 (1975).

517. Wilson A. C., Sarich V. M., Maxson L. R., The importance of gene rearrangement in evolution: Evidence from studies on rates of chromosomal, protein, and anatomical evolution. Proc. Nat. Acad. Sci. USA 71, 3028 (1974).

518. Blake C. C. F., Johnson L. N., Mair G. A., North A. С. T., Phillips D. C., Sarma V. R., Crystallographic studies of the activity of hen egg-white lysozyme. Proc. Roy. Soc. Ser. В 167, 378 (1967).

519. Clarke P. H., Genes and enzymes. FEBS Lett 62, E37—E46 (1976).

520. Wills C., Production of yeast alcohol dehydrogenase isoenzymes by selection. Nature 261, 26 (1976).

521. Betz J. L., Brown P. R., Smyth M. J., Clarke P. H., Evolution in action. Nature 247, 261 (1974).

522. Rigby P. W., Burleigh B. D., Jr., Hartley B. S., Gene duplication in experimental enzyme evolution. Nature 251, 200 (1974).

523. Harley B. S., Burleigh B. D., Midwinter G. C., Moore C. H., Morris H. R., Rigby Р. W. J., Smith M. J., Taylor S. S., Where do new enzymes come from? FEBS Proc. 29, 151 (1966).

524. Hall B. C., Experimental evolution of a new enzymatic function. Kinetic analysis of the ancestral ebg0 and evolved ebg+ enzymes.J. Mol. Biol. 107, 71 (1976).

525. Ingram V. M., Gene evolution and the haemoglobins. Mature 189, 704 (1961).

526. Acher R., The neurohypophyseal hormones: An example of molecular evolution. In: Molecular Evolution (E. Schoffeniels, ed.), Vol. 2, pp. 43, North Holland, Amsterdam, New York, Oxford, 1971.

527. Wichmann A., Lieber die Krystallformen der Albumine (Krystallisation von Lactalbumin). Z. Phys. Chem. 27, 575 (1899).

528. Hill R. L., Brew A)., Lactose synthetase. Adv. Enzymol. 43, 411 (1975).

529. Fleming A., On a remarkable bacteriolytic element found in tissues and secretions. Proc. Roy. Soc. В 93, 306 (1922).

530. Abraham E. P., Robinson R., Crystallization of lysozyme. «Miss D. Crowfoot has kindly undertaken their crystallografic examination», Nature 140, 24 (1937).

531. Phillips D. C., The hen egg-white lysozyme molecule. Proc. Nat. Acad. Sci. USA 57, 484 (1967).

532. Brew K., Vanaman T. C., Hill R. L., Comparison of the amino-acid sequence of bovine a-lactalbumin and hen’s egg-white lysozyme. J. Biol. Chem. 242, 3747 (1967).

533. Brew K., Castellino F. J., Vanaman T. C., Hill R. L., The complete amino acid sequence of bovine a-lactalbumin. J. Biol. Chem. 245, 4570 (1970).

534. Browne W. J., North A. C. T., Phillips D. S., Brew K., Vanaman T. C., Hill R. L., A possible three-dimensional structure of bovine a-lactalbuminbased on that of hen’s egg-white lysozyme. J. Mol. Biol. 42, 65 (1969).

535. Warme P. K., Scheraga H. A., Refinement of the X-ray structure of lysozyme by complete energy minimization. Biochemistry 13, 757 (1974).

536. Stroud R. M., A family of protein-cutting proteins. Sci. Amer. July, 74 (1974).

537. Blow D. M., Structure and mechanism of chvmotrypsin. Acc. Chem. Res. 9, 145 (1976).

538. Beppu Y., Yomosa S., Molecular orbital studies on the enzimatic reaction- mechanism of serine proteases. J. Physic. Soc. Japan 42, 1694 (1977).

539. Phillips D. C., Blow D. M., Hartley B. S., Lowe G. (eds.), A discussion on the structures and functions of proteolytic enzymes, Phyl. Trans. Roy. Soc. London, Ser. В 257, 65 (1970).

540. Poljak R. J., Three-dimensional structure, function and genetic control of immunoglobulins. Nature 256, 373 (1975).

541. Barker W. C., Dayhoff M. O., Immunoglobulins and related proteins. Atlas of Protein Sequence and Structure 5, suppl. 2, 165 (1976).

542. Уотсон Дж. Молекулярная биология гена. — М.: Мир, 1978.

543. Huber R., Antibody structure. Trends Biochem. Sci. 1, 174 (1976).

544. Davies D. R., Padtan E. A., Segal D. M., Three-dimensional structure of immunoglobulins. Annu. Rev. Biochem. 44, 639 (1975).

545. Poljak R. J., Amzel L. M., Avey H. P., Chen B. L., Phizackerley R. P., Saul F., Three-dimensional structure of the Fab'fragment of a human immunoglobulin at 2.8 Å resolution. Proc. Nat. Acad. Sci. USA 70, 3305 (1973).

546. Fridovich I., Superoxide dismutases. Adv. Enzymol. 41, 35 (1974).

547. Stromingler J. L., Histocompatibility antigens. Annu. Rev. Biochem., in press.

548. Richardson J. S., Richardson D. C., Thomas K. A., Silverton E. W., Davies D. R., Similarity of three-dimensional structure between the immunoglobulin domain and the copper, zinc superoxide dismutase subunit. J. Mol. Biol. 102, 221 (1976).

549. Riggs A., Factors in the evolution of hemoglobin function. Fed. Proc. 35, 2115 (1976).

550. Perutz М. F., Haemoglobin. Annu. Rev. Biochem., in press.

551. Kühne W., Ueber den Farbstoff der Muskeln. Virchows Arch. 33, 79 (1865).

552. Hoppe-Seyler F., Ueber die chemischen und optischen Eingenchaften des Blutfarbstoffs. Virchows Arch. 29, 233 (1864).

553. Perutz M. F., Rossmann M. G., Cullis A. F., Mairhead H., Will G., North A. С. T., Structure of haemoglobin. Nature 185, 416 (1960).

554. Edmundson A. B., Amino-acid sequence of sperm whale myoglobin. Nature 205, 883 (1965).

555. Braunitzer G., Gehring-Müller R., Flilschmann N., Flilse K., Hobom G. Rudloff V., Wittmann-Liebold B., Die Konstitution des normalen adulten Humanhämoglobins. Z. Physiol. Chem. 325, 283 (1961).

556. Keller R., Groudinsky O., Wüthrich K., Proton magnetic resonances in cytochrome b2 core. Structural similarities with cytochrome b5. Biochim. Biophys. Acta 328, 233 (1973).

557. Guiard B., Groudinsky O., Lederer F., Homology between bakers’yeast cytochrome b2 and liver microsomal cytochrome b5. Proc. Nat. Acad. Sci. USA 71, 2539 (1974).

558. Warme P. K., Hager L. P., Mesoheme sulfuric anhydride as a heme protein structure probe. Reaction with cytochrome b562. Biochemistry 9, 4244 (1970).

559. Ozolz J., Strittmatter P., The homology between cytochrome b5, hemoglobin and myoglobin. Proc. Nat. Acad. Sci. USA 58, 264 (1967).

560. Rossmann M. G., Argos P., A comparison of the heme binding pocket in globins and cytochrome b5. J. Biol. Chem. 250, 7525 (1975).

561. Hagihara B., Sato N., Yamanaka T., Type b cvtochromes. The Enzymes 11, 549 (1975).

562. Mathews F. S., Lederer F., Crystallographic study of bakers’ yeast cytochrome b2. J. Mol. Biol. 102, 853 (1976).

563. Czerwiński E. W., Mathews F. S., Hollenberg P., Drickamer K., Flager L. P., Crystallographic study of cytochrome b562, from E. coli. J. Mol. Biol. 71, 819 (1972).

564. Takano T., Swanson R., Kallai О. B., Dickerson R. E., Conformational changes upon reduction of cytochrome c. Cold Spring Harbor Symp. 36, 397 (1971).

565. Seybert D. W., Moffat K., Structure of haemoglobin reconstituted with mesoheme. J. Mol. Biol. 113, 419 (1977).

566. Argos P., Mathews F. S., The structure of ferrocytochrome b5 at 2.8 Å resolution. J. Biol. Chem. 250, 747 (1975).

567. Strittmatter P., The nature of the heme binding in microsomal cytochrome b5. J. Biol. Chem. 235, 2492 (1960).

568. Ozols J., Strittmatter P., The interaction of porphyrins and metalloporphyrins with apocytochrome b5. J. Biol. Chem. 239, 1018 (1964).

569. Rossmann M. G. Argos P., Exploring structural homology of proteins. J. Mol. Biol. 105, 75 (1976).

570. John P., Whatley F. R., Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature 254, 495 (1975).

571. Dickerson R. F., Timkovich R., Almassy R. J., The cytochrome fold and the evolution of bacterial energy metabolism. J. Mol. Biol. 100, 473 (1976).

572. Connelly J. L., Jones О. T. G., Saunders V. A., Yates D. W., Kinetic and thermodynamic properties of membrane-bound cytochromes of aerobically and protosvntheticallv grown Rhodopseudomonas spheroides. Biochim. Biophys. Acta 292, 644 (1973).

573. Horowitz N. H., On the evolution of biochemical syntheses. Proc. Nat. Acad. Sci. USA 31, 153 (1945).

574. Astbury W. T., Adventures in molecular biology. Harvey Lect. 46, 3 (1950).

575. Vosberg H. P., Molecular cloning of DNA. Human Gen. 40, 1 (1977).

576. Brownlee G. G., Cartwright E. M., Cowan N. J., Jarivis M., Milstein C., Purification and sequence of messenger RNA for immunoglobulin light chains. Nature New Biol. 244, 236 (1973).

577. Tonegawa S., Hozumi N., Matthyssens G., Schuller R., Somatic changes in the content and context of immunoglobulin genes. Cold Spring Harbor Symp. 41, 877 (1977).

578. Truffa-Bachi P., Veron M., Cohen G. N., Structure, function, and possible origin of a bifunctional allosteric enzyme, Escherichia coli aspartokinase I-homoserine dehydrogenase I. Crit. Rev. Biochem. 2, 379 (1974).

579. Crawford I. P., Gene rearrangements in the evolution of the tryptophan synthetic pathway. Bacteriol. Rev. 39, 87 (1975).

580. Schweizer E., Knobling A., Manger G., Dietlein G., Gene fusion in the fatty acid synthetase system of Saccharomyces cerevisiae. FEBS Proc. 32, 133 (1975) .

581. Y our no J., Kohno T., Roth J. R., Enzyme evolution: Generation of a bifunctional enzyme by fusion of adjacent genes. Nature 228, 820 (1970).

582. Tartof K. D., Redundant genes. Annu. Rev. Gen. 9, 355 (1975).

583. Hood L., Campbell J. H., Elgin S. C. R., The organisation, expression and evolution of antibodies and other multigene families. Annu. Rev. Genet. 9, 305 (1975).

584. Bridges С. B., The BAR «gene», a duplication. Science 83, 210 (1936).

585. Hood L., Antibody genes and other multigene families. Fed. Proc. 35, 2158 (1976).

586. Żuckerkandl E., The appearance of new structures and functions in proteins during evolution. J. Mol. Evol. 7, 1 (1975).

587. McLachlan A. D., Repeating sequence and gene duplications in proteins. J. Mol. Biol. 64, 417 (1972).

588. Black J. A., Dixon G. H., Amino-acid sequence of alpha chains of human haptoglobins. Nature 218, 736 (1968).

589. McLachlan A. D., Walker J. E., Evolution of serum albumin. J. Mol. Biol. 112, 543 (1977).

590. Collins J. H., Homology of myosin DTNB light chain with alkali light chains, troponin C and parvalbumin. Nature 259, 699 (1976).

591. Cantor C. R., Jukes T. H., The repetition of homologous sequences in the polypeptide chains of certain cytochromes and globins. Proc. Nat. Acad. Sci. USA 56, 177 (1966).

592. Russell R. L., Abelson J. N., Landy A., Gefter M. L., Brenner S., Smith J.D., Duplicate genes for tyrosine transfer RNA in Escherichia coli. J. Mol. Biol. 47, 1 (1970).

593. Yeas M., Origin of periodic proteins. Fed. Proc. 35, 2139 (1976).

594. Hendrickson W. A., The molecular architecture of oxygen-carrying proteins. Trends Biochem. Sci. 2, 108 (1977).

595. Bridgen J., Harris J. I., Northron F., Evolutionary relationships in Superoxide dismutase FEBS Lett. 49, 392 (1975).

596. Subramanian E., Molecular structure of acid-proteases. Trends Biochem. Sci. 3, 1 (1978).

597. Edmundson A. B., Ely К. R., Abola E. E., Schiffer M., Panagiotopoulos N., Deutsch H. F., Conformational isomerism, rotational allomerism, and divergent evolution in immunoglobulin light chains. Fed. Proc. 35, 2119 (1976).

598. McLachlan A. D., Tests for comparing related amino acid sequences. Cytochrome c and cytochrome c551. J. Mol. Biol. 61, 409 (1971).

599. McLachlan A. D., Stewart M. The 14-fold periodicity in a-tropomyosin and the interaction with actin. J. Mol. Biol. 103, 271 (1976).

600. McLachlan A. D., Gene duplication in carp muscle calcium binding protein. Nature New Biol. 240, 83 (1972).

601. Rossmann M. G., Argos P., The taxonomy of protein structure. J. Mol. Biol. 109, 99 (1977).

602. Schirmer R. H., Schirmer I., The first enzyme — Kühne’s trypsin — a hundred years old favourite. Pharma Int. 5/6, 10 (1976).

603. Cunningham B. A., Wang J. L., Berggard I., Peterson P. A., The complete 12-462 amino acid sequence of ß2-microglobulin. Biochemistry 12, 4811 (1973).

604. Evans H. J., Steinmann H. M., Hill R. L., Bovine erythrocyte superoxide dismutase II. J. Biol. Chem. 249, 7315 (1974).

605. Steinmann H. M., Naik V. R., Abernethy J. L., Hill R. L., Bovine erytrocyte superoxide dismutase I. J. Biol. Chem. 249, 7326 (1974).

606. Abernethy J. L., Steinmann H. M., Hill R. L., Bovine erythrocyte Superoxide dismutase III. J. Biol. Chem. 249, 7339 (1974).

607. Segal D. M., Padlan E. A., Cohen G. H., Rudikoff S., Potter M., Davies D. R., The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site. Proc. Nat. Acad. Sci. USA 71, 4298 (1974).

608. Colman P. M., Deisenhofer J., Huber R., Palm W., Structure of the human antibody molecule Kol (Immunoglobulin Gl). Am electron density map at 5 Å resolution. J. Mol. Biol. 100, 257 (1976).

609. Itagaki E., Hager L. P., Studies on cytochrome b562 of Escherichia coli. J. Biol. Chem. 241, 3687 (1966).

610. Oshino N., Imai Y., Sato R., A function of cytochrome b5 in fatty acid desaturation by rat liver microsomes. J. Biochem. (Tokyo) 69, 155 (1971).

611. Ozols J., Strittmatter P., Correction of the amino acid sequence of calf liver microsomal cytochrome b5. J. Biol. Chem. 244, 6617 (1969).

612. Tsugita A., Kobyashi M., Tani S., Kyo S., Rashid M. A., Yoshida Y., Kajihara T., Hagihara B., Comparative study of the prymary structures of cytochrome b5 from four speries. Proc. Nat. Acad. Sci. USA 67, 442 (1970).

613. Itagaki E., Hager L. P., The amino acid sequence of cytochrome b562 of Escherichia coli. Biochem. Biophys. Res. Commun. 32, 1013 (1968).

614. Cavadore J. G., Polycondensations d’a-amino acides en milieu aqueux. These doctorat es sciences physiques, Universite des Sciences et Techniques du Languedoc, Montpellier, 1971.

615. Kretsinger R. H., Calcium-binding proteins. Annu. Rev. Biochem. 45, 239 (1976).

616. Nozaki M., Structure and function of metalloenzymes (review). J. Syn. Org. Chem. 34 (NM), 805 (1976).

617. Potter M., Rudikoff S., Vrana M., Rao D. N., Mushinksi E. B., Primary structural differences in myeloma proteins that bind the same haptens. Cold Spring Harbor Symp. 41, 661 (1976).

618. Amzel L. A4., Poljak R. J, Saul F., Varga B. M., Richards F. F., The three- dimensional structure of a combining region-ligand complex of immunoglobulin NEW at 3.5 Å resolution. Proc. Nat. Acad. Sci. USA 71, 1427 (1974).

619. Wu T. T., Kabat E. A., An analysis of the sequences of the variable regions of Bence-Jones Proteins and myeloma light chains and their implications for antibody complementarity. J. Exp. Med. 132, 211 (1970).

620. Padlan E. A., Davies D. R., Pecht I., Givol D., Wright C., Model-building studies of antigen-binding sites: The hapten-binding site of MOPC-315. Cold Spring Harbor Symp. 41, 627 (1976).

621. Dwek R. A., Wain-Hobson S., Dover S., Gettins P., Sutton B., Perkins S. J., Givol D., Structure of an antibody combining site by magnetic resonance. Nature 266, 31 (1977).

622. Hunkapiller M. W., Goetze A. M., Richards J. H., Hood L. E., Structure- function correlates for DNP and PC binding myeloma proteins. Immunogenetics 4, 424 (1977).

623. Klotz J., Hunstron D. L., Protein-interaction with small molecules. J. Biol. Chem. 250, 3001 (1975).

624. Jolley A4. E., Rudikoff S., Potter M., Glaudemans С. P., Spectral changes on binding of oligosaccharides to murine IgA myeloma immunoglobulins. Biochemistry 12, 3039 (1973).

625. Kabat E. A., In: Experimental Immunochemistry (E. A. Kabat, M. M. Mayer, eds.), 2nd ed., Charles C. Thomas, Springfield, Illinois (1961).

626. Citri N., Conformational adaptability in enzymes. Adv. Enzymol. 37, 397 (1973).

627. Robertas J. D., AIden R. A., Birktoft J. J., Kraut J., Powers J. C., Wilcox P. E., An X-ray crystallographic study of the binding of peptide chloromenthyl ketone inhibitors to subtilisin BPN'. Biochemistry 11, 2439 (1972).

628. Blow D. M., Birktojt J. J., Hartley B. S., Role of a buried acid group in the mechanism of action of chymotrypsin. Nature 221, 337 (1969).

629. Ingles D. W., Knowles J. R., Specificity and stereo-specificity of a-chymotrypsin. Biochem. J. 104, 369 (1967).

630. Haldane J. B. S., Enzymes. Longmans, Green, London (1930).

631. Jencks W. P., Binding energy, specificity and enzymic catalysis: The Circe effect. Adv. Enzymol. 43, 220 (1975).

632. Sweet R. M., Wright H. T., Janin J., Chothia C. H., Blow D. M., Crystal structure of the complex of porcine trypsin with soybean trypsin inhibitor (Kunitz) at 2.6 A resolution. Biochemistry 13, 4212 (1974).

633. Fischer H., Zeile K., Synthese des Hämatoporphyrins, Protoporphyrins und Hämins. Ann. Chem. 468, 98 (1929).

634. Baldwin I. M., Structure and function of haemoglobin. Progr. Biophys. Mol. Biol. 29, 225 (1975).

635. Watson H. C., Nobbs C. L., The Structure of Oxygenated and Deoxygenated Myoglobin, Collog. Ges. Biol. Chem. (Mosbach/Baden). Springer-Verlag, Heidelberg, 1968, pp. 37—48.

636. Watson H. C., The stereochemistry of the protein myoglobin. Progr. Stereo- chem. 4, 299 (1969).

637. Falk J. E., Porphyrins and Mettalloporphyrins, BBA Library 2, Elsevier, Amsterdam — London — New York, 1964.

638. Le Gall J., Postgate J. R., Bacterial cytochromes c. Adv. Microbiol. Physiol. 10, 81 (1973).

639. Wang J. H., Synthetic biochemical models. Accounts Chem. Res. 3, 90 (1970).

640. Salemme F. R., A Hypothetical structure for an intermolecular electron transfer complex of cytochromes c and 65, J. Mol. Biol. 102, 563 (1976).

641. Maehley A. C., Haemin-protein binding in peroxidase and methaemalbumin. Nature, 192, 630 (1961).

642. Schichi H., Hackett D. P., Funatsu C., Studies on the 6-type cytochromes from mung bean seedlings. J. Biol. Chem. 238, 1156 (1963).

643. Nobbs C. L., Watson H. C., Kendrew J. C., Structure of deoxymyoglobin: A crystallographic study. Nature. 209, 339 (1966).

644. Maltempo M. M., Moss T. H., Cusanovich M. A., Magnetic studies on the changes in the environment in chromatium ferricytochrome c1. Biochim. Biophys. Acta, 342, 290 (1974).

645. Harrison S. C., Blout E. R., Reversible conformational changes of myoglobin and apomyoglobin. J. Biol. Chem. 240, 299 (1965).

646. Lim V. I., Efimov A. V., The folding pathway for globins. FEBS. Lett. 78, 279 (1977).

647. Corwin A. H., Erdman J. G., A synthetic ferroporphyrin complex that is passive to oxygen. J. Amer. Chem. Soc. 68, 2473 (1946).

648. Collmann J. P., Brauman J. J., Halbert T. R.t Suslick К. S., Nature of O2 and CO binding to mettalloporphyrins and haem proteins. Proc. Nat. Acad. Sci. USA 73, 3333 (1976).

649. Rougee M., Brault O., Influence of trans weak or strong field ligands upon the affinity of deuteroheme for carbon monoxide. Monoimidazoleheme as a reference for unconstrained five-coordinate hemoproteins. Biochemistrv 14. 4100 (1975).

650. Pauling L., Nature of the iron-oxygen bond in oxyhaemoglobin. Nature 203, 182 (1964).

651. oli mann J. P., Gagne P. P., Peed C. A., Robinson W. T., Rodley G. A., Structure of an iron II dioxygen complex; a model for oxygen-carrying he- meproteins. Proc. Nat. Acad. Sei. USA 71, 1326 (1974).

652. Weiss J. J., Nature of the iron-oxygen bond in oxyhaemoglobin. Nature 202, 83 (1964).

653. Thomson A. J., Ligand binding properties of the haem group. Nature 265, 15 (1977).

654. Hoard J. L., In; Porphyrins and Mettalloporphyrins (К. M. Smith, ed.), Elsevier, New York, 1975, p. 356.

655. Huber R., Epp O., Formanek R., Structures of deoxy-and carbonmonoxy- erythrocruorin. J. Mol. Biol. 52, 349 (1970).

656. Padlan E. A., Love W. E., Three-dimensional structure of hemoglobin from the polychaete annelid, Glycera dibranchiala, at 2.5 Å resolution. J. Biol. Chem. 249, 4067 (1975).

657. Norvell J. G., Nunes A. C., Schoenborn В. P., Neutron diffraction analysis of myoglobin: Structure of the carbon monoxide derivative. Science 190, 568 (1975).

658. Kaminsky L. S., Miller V. J., The ascorbate reduction of denatured ferricytochrome c. Biochem. Biophys. Res. Commun. 49, 252 (1972).

659. Moore G. R., Williams R. J. P., Structural basis for the variation in redox potential of cytochromes. FEBS Lett. 79, 229 (1977).

660. Kassner p. J., Effects of nonpolar environments on the redox potentials of heme complexes. Proc. Nat. Acad. Sci. USA 69, 2263 (1972).

661. Freeman H. C., Crystal structures of metal-peptide complexes. Adv. Prot. Chem. 22, 257 (1967).

662. Perutz M. F., The haemoglobin molecule. Proc. Roy. Soc. (B) 173, 113 (1969) .

663. Pauling L., Coryell C. D., The magnetic properties and structure of the hemochromogens and related substances. Proc. Nat. Acad. Sci. USA 22, 159 (1936).

664. Hoard J. L., In: Hemes and Hemoproteins (B. Chance, R. W. Estabrook, T. Yonetani, eds.), Academic Press, New York and London, 1966.

665. Pai E. F., Sachsenheimer W., Schirmer R. H., Schulz G. E., Substrate positions and induced-fit in crystalline adenylate kinase. J. Mol. Biol. 114, 37 (1977).

666. Perutz M. F., Structure and mechanism of haemoglobin. Br. Med. Bull. 32, 195 (1976).

667. Edsall J. T., Blood hemoglobin. J. Hist Biol. 5, 205 (1972).

668. KHmartin J. V., Rossi-Bernardi L., Interaction of haemoglobin with hydrogen ions, Carbon dioxide, and organic phosphates. Physiol. Rev. 53, 836 (1973).

669. Baggot J., The magnitudes of the Bohr and Haldane effects. Trends Biochem. Sci. 3, N30 —N32, (1978).

670. Benesch R., Benesch R. E., Interacellular organic phosphates as regulators of oxygen release by haemoglobin. Nature 221, 618 (1969).

671. Tyuma I., Shimizu K-, Effect of organic phosphates on the difference in oxygen affinity between fetal and human haemoglobin. Fed. Proc. 29, 1112 (1970) .

672. Arnone A., X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature 237, 146 (1972).

673. Lenfant C., Torrance J. D., Woodson R. D., Jacobs P., Finch C. A., Role of organic phosphates in the adaptation of man to hypoxia. Fed. Proc. 29, 1115 (1970).

674. Bohr C., Theoretische Behandlung der quantitativen Verhältnisse bei der Sauerstoffaufnahmen des Haemoglobins. Zentr. Physiol. 17, 682 (1903).

675. Bohr C., Hasselbalch K., Krogh A., Über einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt. Skand. Arch. Physiol. 16, 402 (1904).

676. Christiansen J., Douglas C. G., Haldane J. S., The absorption and dissociation of carbon dioxide by human blood. J. Physiol. 48, 245 (1914).

677. Hill A. V., The possible effects о the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 40, IV (1910).

678. Adair G. S., The haemoglobin system. J. Biol. Chem. 63, 493 (1925).

679. Wyman J., Allen D. W., The problem of the heme interactions in haemoglobin and the basis of the Bohr effect. J. Polymer Sci. 7, 499 (1951).

680. Wyman J., Heme proteins. Adv. Prot. Chem. 4, 407 (1948).

681. Monod J., Changeux J. P., Jacob F., Allosteric proteins and selfular control systems. J. Mol. Biol. 6, 306 (1963).

682. Koshland D. E., Jr., Nemethy G., Filmer D., Comparison of experimental binding data and theoretical models in proteins containing subunit. Biochemistry 5, 365 (1966).

683. Eventoff W., Rossmann M. G., The evolution of dehydrogenases and kinases. CRC Crit. Rev. Biochem. 3, 112 (1975).

684. Katunuma N., Kito K., Kominami E., A new enzyme that specifically inactivates apo-protein of NAD-dependent dehydrogenases. Biochem. Biophys. Res. Commun. 45, 76 (1971).

685. Einarsson R., Eklund H., Zeppezauer E., Boiwe T., Bränden С.-I., Binding of salicylate in the adenosine-binding pocket of dehydrogenases. Eur. J. Biochem. 49, 41 (1974).

686. Koshland D. E., Jr., Application of a theory of enzyme specifity to protein synthesis. Proc. Nat. Acad. Sci. USA 44, 98 (1958).

687. Koshland D. E., Protein shape and biological control. Sei. Amer. October, 52 (1973).

688. Sachsenheimer W., Schulz G. E., Two conformations of cryctalline adenylate kinase. J. Mol. Biol. 114, 23 (1977).

689. Richards F. M., Wyckofl H. W., Bovine pancreatic ribonuclease. The Enzymes 4, 647 (1971).

690. Phillips S. E. V., Structure of oxymyoglobin. Nature 273, 247 (1978).

691. Webb L. E., Hill E. J., Banaszak L. J., Conformation of nicotinamide adenide dinucleotide bound to cytoplasmic malate dehydrogenase. Biochemistry 12, 5101 (1973).

692. Ohlsson I., Nordstrom В., Bränden C.-L., Structural and functional similarities within the coenzyme binding domains of dehydrogenases. J. Mol. Biol. 89, 339 (1974).

693. Williams R. E., Phosphorylated sites in substrates of intracellular protein kinases: A common feature in amino acid sequences. Science 192, 473 (1976).

694. Scanu A. M., Plasma lipoprotein structure (editorial). Nature 270, 209 (1977).

695. Fox C. F., The structure of cell membranes. Sci. Amer. 226, 30 (1972).

696. Singer S. J., Nicolson G. L., The fluid mosaic model of the structure of cell membranes. Science 175, 720 (1972).

697. Metzler D. E., Biochemistry. Academic Press, New York, 1977.

698. Ozols J., Gerard C., Covalent structure of the membranous segment of horse cytochrome ps. J. Biol. Chem. 252, 8549 (1977).

699. Henderson R., Unwin P. N. T., Three dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28 (1975).

700. Blaurock A. E., Bacteriorhodopsin: a trans-membrane pump containing a-helix. J. Mol. Biol. 93, 139 (1975).

701. Hasselbach W., The sarcoplasmic calcium pump— a most efficient ion translocating system. Biophys. Struct. Mech. 3, 43 (1977).

702. MacLennan D. H., Holland P. C., Calcium transport in sarcoplasmic reticulum. Annu. Rev Biophys. Bioeng. 4, 377 (1975).

703. Hasselbach W., Makinose M., Die Calciumpumpe der Erschlaffungsgranades Muskels und ihre Abhängigkeit von der ATP-Spaltung. Biochem. Z. 333, 518 (1961).

704. Makinose M., Hasselbach IF., ATP synthesis by the reverse of the sarcoplasmic calcium pump. FEBS Lett. 12, 271 (1971).

705. Rothfield L., Romeo D., Hinckley A., Reassembly of purifield bacterial membrane components. Fed. Proc. 31, 12 (1972).

706. Levey G. S., Restoration of norepinephrine responsiveness of solubilised myocardial adenylate cyclase by phosphatidylinositol. J. Biol. Chem. 246, 7405 (1971).

707. Martonosi A. N., In: Calcium Transport in Secretion and Contraction (E. Carafoli, F, dementi, W. Drabikowski A. Margreth, eds.), North Holland, Amsterdam, 1975, pp. 77—86.

708. Brown P. K., Rhodopsin rotates in the visual receptor membrane. Nuture New Biol. 236, 35 (1972).

709. Nicolson G. L., Transmembrane control of the receptors on normal and tumor cells. Biochem. Biophys. Acta 457, 57 (1976).

710. Singer S. J., The molecular organisation of membranes. Anrtu. Rev. Biochem. 43, 805 (1974).

711. Kornfeld R., Kornfeld S., Comparative aspects of glycoprotein structure. Annu. Rev. Biochem. 45, 217 (1976).

712. Marshall R. D. Glycoproteins. Annu. Rev. Biochem. 41, 673 (1972).

713. Edelman G. M., Summary: Understanding selective molecular recognition. Cold Spring Harbor Symp. 39, 891 (1977).

714. Wittmann H. G., Structure, function and evolution of ribosomes. Eur. J. Biochem. 61, 1 (1976).

715. Kurland C. G., Structure and function of the bacterial ribosome. Annu. Rev. Biochem. 46, 173 (1977).

716. Liljas A., Eriksson S., Donner D., Kurland C. G., Isolation and crystallization of stable domains of the protein L7/L12 from Escherichia coli tibosomes. FEBS. Lett. 88, 300 (1978).

717. Leberman R., Wittinghofer A., Schulz G. E., Polymorphism in crystalline elongation factor Tu-GDP from E. coli. J. Mol. Biol. 106, 951 (1976).

718. Kabsch W., Gast W. H., SchulzG. E., Leberman R., Low resolution structure of partially trypsin-degraded polypeptide elongation factor, EF-Tu, from E. coli. J. Mol. Biol. 117, 999 (1977),

719. Steitz T. A., Stenkamp R. E., Geister N., Weber K., Finch J, X-ray and electron microscopic studies of crystals of native and proteolytically cleaved lac repressor protein. Int. Symp. Biomol. Struct. Conform., Fund, and Evol. Madras (1978).

720. Beyreuther K., Raufuss H., Schrecker O., Hengstenberg W., The phosphoenol- pyruvate-dependent phosphotransferase system of Staphylococcus aureus. Eur. J. Biochem. 75, 275 (1977).

721. Winzler R. J., Glycoproteins. In: Handbook of Biochemistry, Publ. Chemical Rubber Co., Cleveland, Ohio, 1970, p. C42—C49.

722. Gallagher J. T., Corfield A. P., Mucin-type glycoproteins — new perspectives on their structure and synthesis. Trends Biochem. Sci. 3, 38 (1978).

723. DeVries A. L., Glycoproteins as biological antifreeze agents in Antarctic fish. Science 172, 1152 (1971).

724. Feeney R. E., Osaga D. T., Polar fish proteins. Trends Biochem. Sci. 2, 269 (1977).

725. Nolsestuen G. L., Suttie L. W., Properties of asialo and aglycoprothrombin. Biochem. Biophys. Res. Commun. 45, 198 (1971).

726. Edelman G. M., Yahara J., Wang J. L., Receptor mobility and receptor cytoplasmic interactions in lymphocytes. Proc. Nat. Acad. Sci. USA 70, 1442 (1973).

727. Bayer E., Holzbach G., Synthetische Hämolopolymers zur reversiblen Anlagerung von molekularem Sauerstoff. Angew. Chem. 89, 120 (1977).

728. Schmidt F. O., Schneider D. M.,Crothers D. M., (eds.), Functional Linkage in Biomolecular Systems. Raven Press, New York, 1975.

729. V. Bertalanffy L., General System Theory. George Braziller, New York. 1968.

730. Koshland D. E., The comparison of non-enzymic and enzymic reaction velocities. J. Theoret. Biol. 1, 75 (1962).

731. Jencks W. P., Catalysis in Chemistry and Enzymology. McGraw-Hill, New York, 1969 chap. 5.

732. Hammes G. G., Mechanism of enzyme catalysis. Nature 204, 342 (1964).

733. Hamilton C. L., Nieman C., Hammond G. S., A quantitative analysis of the binding of N-acyl derivatives of a-aminoamides by a-chvmotrypsin. Proc. Nat. Acad. Sci. USA 55, 664 (1966).

734. Bender M. L., Kezdy F. J., The current status of the a-chymotrypsin mechanism. J. Amer. Chem. Soc. 86, 3704 (1964).

735. Bürgi H. B., Shefter E., Dunitz J. D., Geometrical reaction coordinates. II. Nucleophilic addition to a carbonyl group. J. Amer. Chem. Soc. 95, 5065 (1973).

736. Hunkapiller M., Smatlcombe S. H., Whitaker D. R., Richards J. H., Ionization behaviour of the histidine residue in the catalytic triad of serine proteases. J Biol. Chem. 248, 8306 (1973).

737. Garavito R. M., Rossmann M. G., Argos P., Eventoff W., Convergence of active center geometries. Biochemistry 16, 5065 (1977).

738. Pauling L., Molecular architecture and biological reactions. Chem. Engineer. News 24, 1375 (1946).

739. Wolfenden R., Analog approaches to the structure of the transition state in enzyme reactions. Acc. Chem. Res. 5, 10 (1972).

740. Lienhard G. E-, Enzymatic catalysis and transition state theory. Science 180, 149 (1973).

741. Page M. I., Jencks W. P., Entropie contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc. Nat. Acad. Sei. USA 68, 1678 (1971).

742. Bruice T. С. B., Proximity effects and enzyme catalysis. The Enzymes 2, 217 (1970).

743. Storm D. R., Koshland D. E., A source for the special catalytic power of enzymes: Orbital steering. Proc. Nat. Acad. Sci. USA 66, 445 (1970).

744. Storm D. R., Koshland D. E., Jr., An indication of the magnitude of orientation factors in esterification, J. Amer. Chem. Soc. 94 , 5805 (1972); Effect of small changes in orientation on reaction rate. J. Amer. Chem. Soc. 94, 5815 (1972).

745. Roberts G. С. K., What’s special about enzymes? (editorial). Nature 271, 409 (1978).

746. Crosby J., Stone R., Lienhard G. E., Mechanisms of thiamine-catalyzed reactions. Decarboxylation of 2-(l-carboxyl-l-hydroxyethyl)-3,4-dimet- hylthiazolium chlotide, J. Amer. Chem. Soc. 92, 2891 (1970).

747. Lipscomb W. N., Hartsuck J. A., Quioche F. A., ReekeG. N., Jr., The structure of carboxypeptidase A. Proc. Nat. Acad. Sci. USA 64, 28 (1969).

748. Ford L. O., Jehnson L. N., Machin P. A., Philips D. C., Tjian R., Crystal structure of a lysozyme-tetrasaccharide lactone complex. J. Mol. Biol. 88, 349 (1974).

749. Chothia С. H., Janin J., Stability and specifity of protein-protein interactions: The case of trypsin-trypsin inhibitor complexes. J. Mol. Biol., 100, 197 (1976).

750. Wulff G., Synthetische Polymere mit chiralen Hohlräumen. Nachr. Chem. Techn. Lab. 25, 239 (1977).

751. Watts D. C., Creatine kinase. The Enzymes 8, 383 (1973).

752. Turner D. C., Wallimann T., Eppenberger H. M., A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase. Proc. Nat. Acad. Sci. USA 70, 702 (1973).

753. Atkinson D. E., Functional linkage as basis principle of biology, In: Functional Linkage in Biomolecular Systems (F. O. Schmitt, Schneider D. M., Crothers D. M., eds). Raven Press, New York, 1975, p. 43.

754. Holmes К. C., Selbstorganisation biologischer Strukturen. Klin. Wochenschr. 53, 997 (1975).

755. Huxley H. E., Muscular contraction and cell motility. Nature 243, 445 (1973).

756. Clarke M., Spudich J. A., Nonmuscle contractile proteins: The role of actin and myosin in cell motility and shape determination. Annu. Rev. Biochem. 46, 797 (1977).

757. DeRosier D., Mandelkow E., Silliman A., Tilney L., Kane R., Structure of actin-containing filaments from two types of nonmyscle cells. J. Mol. Biol. 113, 679 (1977).

758. Mannherz H. G., Goody R. S., Proteins of contractile systems. Annu. Rev. Biochem. 45, 427 (1976).

759. Huxley A. F., Niedergerke R., Structural changes in muscle during contraction. Nature 173, 971 (1954).

760. Huxley H. E., Hanson J., Changes in the cross-striations of muscle during contraction and strech and their structural interpretation. Nature 173, 973 (1954).

761. Koshland D. E., Jr., Neet К. E., The catalitic and regulatory properties of enzymes. Annu. Rev. Biochem. 37, 359 (1968).

762. Diebler H., Eigen M., Hammes G. G., Relaxations-spektrometrische Untersuchungen schneller Reaktionen von ATP in wässriger Lösung. Z. Naturforsch. 15b 554 (1960).

763. Chance B., Catalysis in biochemical reactions. Z. Elektrochem. 64, 7 (1960).

764. Eigen M., De Maeyer L., Relaxation methods. In: Investigazion of Rates And Mechanisms of Reaction (Friess S. L., Lewis E. S., Weissberger A., eds.), Techique of Ogganic Chemistry, Vol. 8, Part II, 1963, p. 895.

765. Einstein A., Schallausbreitung in teilweise dissoziierten Gasen. Sitz. ber. Preuss. Akad. Wiss. Phys. Math. KL Berlin, 1920, p. 382.

766. Hartridge II., Reughton F. J. W., A method of measuring the velocity of very rapid chemical reactions. Proc. Roy. Soc. Ser. A104, 376 (1923).

767. Huxley H. E., Structural changes in the actin- and myosin-containing filaning filaments during contraction. Cold Spring Harbor Symp. Quant. Biol. 37, 361 (1972).

768. Spudich J. A., Huxley H. E., Finch J. T., Regulation of skeletal muscle contraction. II. Structural studies of the interaction of the tropomyosinetroponin complex with actin. J. Mol. Biol. 72, 619 (1972).

769. Parry D. A.D., Squire J. M., Structural role of tropomyosin in muscle regulation: Analyse of the X-ray diffraction patterns from relaxed and contracting muscles. J. Mol. Biol. 75, 33 (1973).

770. Hasselbach V., The sarcoplasmic calcium transport, a basic mechanism of the regulation of muscle activity, Verh, Dtsch. Zool. Ges., 1976, 100 (1976).

771. Ebashi S., Endo M., Calcium ion and muscle contraction. Progr. Biophys. Mol. Biol. 18, 125 (1968).

772. Cohen C., The protein switch of muscle contraction. Sсi. Amer. November, 36 (1975).

773. Weber A., Regulation of muscle contraction through cooperative interaction in the actin filament. In: Functional Linkage in Biomolecular Systems (Schmidt F. O., Schneider D. M., Crothers D. M., eds.), Raven Press, New York, 1975, p. 312.

774. Kirschner K., Kinetic analysis of allosteric enzymes. Curr. Top. Cell. Reg. 4, 167 (1971).

775. Dische Z., Interdependence of various enzymes of the glycolytic system and the automatic regulation of their activity within the cells. I. Inhibition of the phosphorylation of glucose in red corpuscles by monophosphoglyceric and diphosphoglyceric acids; state of the diphosphorylation of glucose. Bull. Soc. Chim. Biol. (Paris) 23, 1140 (1971).

776. Umbarger H. E., Evidence for a negative-feedback mechanism in the biosynthesis of isoleucine. Science 123, 848 (1956).

777. Walsh D. A., Ashby C. D., Protein kinases: Aspects of their regulation and diversity. Recent Progr. Horm. Res. 29, 329 (1973).

778. Robinson G. A., Butcher F. R. W., Sutherland E. W., Cyclic AMP, Academic Press, New York, 1971.

779. Hagins W. A., Yoshikami S., A role for Ca2+ in excitation of retinal rods and cones. Exp. Eye Res. 18, 299 (1974).

780. O'Dell D., Egg activation (editorial). Nature 270, 558 (1977).

781. Eigen M., Hammes G., Elementary steps in enzyme reactions (as studied by relaxation spectrometry). Adv. Enzymol. 25, 1 (1963).

782. Eigen M., Construction of control and self-organizing systems. In: Functional, linkage in Biomolecular Systems (Schmidt F. O., Schneider D. M., Crothers D. M., eds.), Raven Press, New York, 1975, p. 38.

783. Rilegg J. C., Tregear R. T., Mechanical factors affecting the ATPase activity of glycerol-extracted insect fibrillar flight muscle. Proc. Rov. Soc. B165, 497 (1966).

784. Pringle J. W. S., The contractile mechanism of insect fibrillar muscle. Progr, Biophys. Mol. Biol. 17, 3 (1967).

785. Weber A., Murray J. M., Molecular control mechanism in muscle contaction. Physiol. Rev. 53, 612 (1973).

786. Pohl F. M., Empirical protein energy maps. Nature New Biol. 234, 277 (1971).

787. Doty P., Holtzer A. M., Bradbury J. H., Blout E. R., Polypeptides. II. The configuration of polymers of V-benzyl-L-glutamate in solution. J. Amer. Soc. 76, 4493 (1954).

788. Whing E., Beitrag zur Theorie des Ferromagnetismus, Zeilschr. Phys. 31, 253 (1925).

789. Zimm B. H., Bragg J. K., Theory of the phase transition between helix and random coil in polypeptide chains. J. Chem. Phys. 31, 526 (1959).

790. Kramers H. A., Wannier G. H., Statistics of the two-dimensional ferromagnet. Phys. Rev. 60, 252 (1941).

791. Ландау Л. Д., Лифшиц E. M. Теоретическая физика. T. 5. Статистическая физика. — М.: Наука, 1976.

792. Hol W. G. J., van Duijnen P. T., Berendsen H. J. C., The a-helix dipole and the properties of proteins. Nature 273, 443 (1978).

793. Creighton T. E., Experimental studies of protein folding and unfolding. Progr. Biophys. Mol. Biol. 33, 231 (1978).

794. Dickerson R. E., Geis I., The Structure and Action of Proteins. Harper & Row, New York, Evanston, London, 1969.

795. Takano T., Structure of myoglobin refined at 2 Å resolution. J. Mol. Biol. 110, 537 (1977).

796. Marshall J. J., Manipulation of the properties of enzymes by covalent attachment of carbohydrate. Trends Biochem. Sсi. 3, 79 (1978).

797. Collman J. P., Brauman J. I., Rose E., Suslick К. S., Cooperativity in О2 binding to iron porphyrins. Proc. Nat. Acad. Sсi. USA 75, 1052 (1978).

798. Mitsui Y., Satow Y., Sakamaki T., litaka Y., Crystal structure of a protein proteinase inhibitor, Streptomyces subtilisin inhibitor, at 2.3 Å resolution. J. Biochem. (Tokyo) 82, 295 (1977).

799. Ploegman J. H., Drent G., Kalk К. H., Hol W. G. J., Heinrikson R. L., Keim P., Weng L., Russell J., The covalent and tertiary structure of bovine liver rhodanese. Nature 273, 124 (1978).

800. Richardson J. S., Richardson D. C., Thomas К. A., Silverlon E. W., Davies D. R., Similarity of three-dimensional structure between the immunoglobulin domain and the cooper, zinc superoxide dismutase subunit. J. Mol. Biol. 102, 221 (1976).

801. Hagler A. T., Honig В., On the formation of protein tertiary structure on a computer. Proc. Nat. Acad. Sс. USA 75, 554 (1978).

802. Remington S. L., Matthews B. W., A general method to assess similarity of protein Structures, with applications to T4 bacteriophage lysozyme. Proc. Nat. Acad. Sei. USA 75, 2180 (1978).

803. Needleman S. N., Wungch C. D., A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443 (1970).

804. Fermi G., Three-dimensional Fourier synthesis of hyman deoxyhaemoglobin at 2,5 Å resolution: Refinement of the atomic model. J. Mol. Biol. 97, 237 (1975).

805. Gutfreund H., Trentham D. R., Energy changes during the formation and inter conversion of enzyme-substrate complexes. Ciba Foundation Symposium 31, 69 (1975).