Биохимические основы жизнедеятельности организма человека - Волков Н.И., Несен Э.Н. 2000
Биохимические основы жизнедеятельности организма человека
Обмен энергии в организме
Источники энергии
Известно, что организм человека в состоянии относительного покоя использует в сутки около 8000 кДж энергии. Большая часть энергии расходуется на биосинтез веществ: 1700 кДж — на синтез белков, жиров, углеводов и 3700 кДж — на синтез АТФ. Меньшая часть энергии используется для поддержания работы сердца и дыхательных мышц (1130 кДж), транспорт веществ (900 кДж). Значительно увеличивается расход энергии при выполнении напряженной физической работы. Энерготраты спортсмена составляют примерно 21 000 кДж ∙ сут-1.
Организм человека получает энергию из внешней среды с растительной и животной пищей в виде углеводов, жиров и белков.
Первичным источником энергии для всех живых организмов является энергия солнца. Солнечная энергия накапливается зелеными растениями в органических веществах в процессе их фотосинтеза (рис. 11). Зеленый пигмент растений хлорофилл способен аккумулировать кванты энергии солнечного света (hv) при синтезе органических веществ из углекислого газа и воды. Схема уравнения процесса фотосинтеза молекулы глюкозы имеет вид
В организме человека энергия химических связей органических веществ извлекается только в процессе их катаболического распада и окисления. При этом высвобождается свободная энергия. Так, например, при окислении глюкозы молекулярным кислородом высвобождается около 2880 кДж ∙ моль-1 свободной энергии:
С6Н12O6 + 6O2 6СO2 + 6Н2O - ∆Q0
Рис. 11 Схема преобразования энергии
При окислении пальмитиновой кислоты, которая входит в состав жиров организма, высвобождается 9 788 кДж ∙ моль-1 энергии:
С16Н32O2 +23O2 → 16СO2 + 146Н2O - ∆Q0
Распад питательных веществ и высвобождение из них свободной энергии происходит постепенно в несколько этапов (см. главу 2). Под свободной энергией понимают ту часть потенциальной химической энергии питательных веществ, которая в организме может использоваться для выполнения полезной работы в условиях постоянной температуры и давления. Свободная энергия в клетках не может использоваться непосредственно в процессах жизнедеятельности. Она в большей степени аккумулируется в химических связях высокоэнергетических (макроэргических) соединений, в основном в молекулах АТФ (аденозинтрифосфорная кислота). Только энергия макроэргических соединений может использоваться клетками для обеспечения ее многих функций. Эта энергия способна превращаться в другие формы энергии (см. рис. 11).
Изменение уровня свободной энергии в биохимии принято выражать в джоулях (Дж) или калориях (кал) на 1 моль вещества. Одна калория соответствует 4,184 Дж. Калория — это количество тепла, необходимое для повышения температуры 1 г воды от 14,5 до 15,5 "С.
Таким образом, аккумуляторами и носителями свободной энергии в клетках организма являются высокоэнергетические соединения. В центре энергетического обмена клетки находятся адениннуклеотиды — АТФ и АДФ: АТФ принадлежит роль универсального источника энергии в клеточном метаболизме и поддержании многих функций организма; АДФ используется для синтеза АТФ.
К высокоэнергетическим относятся вещества, имеющие химические связи, при гидролизе которых выделяется более 21 кДж ∙ моль-1 свободной энергии. Такие химические связи, как и сами вещества, еще называют макроэргическими.
Большинство макроэргических веществ являются фосфорорганическими соединениями. Они могут передавать свой фосфат на другие вещества. Поэтому макроэргическими называют вещества с высоким потенциалом переноса фосфатной группы (табл. 3). Высвобождаемая при их гидролизе свободная энергия (∆Q0) используется для переноса фосфата на молекулу вещества, у которого потенциал свободной энергии ниже. Реакция присоединения фосфата называется фосфорилированием.
ТАБЛИЦА 3 Высокоэнергетические соединения организма и величина стандартной свободной энергии их гидролиза при оптимальных условиях (-∆Q0)
Соединение |
-∆О0 |
|
кДж ∙ моль-1 |
ккал ∙ моль-1 |
|
Фосфоэнолпируват |
61,7 |
14,8 |
1,3-Дифосфоглицерат |
49,2 |
11,8 |
Креатинфосфат |
42,5 |
10,3 |
Ацетил-КоА |
30,4 |
7,3 |
Пирофосфат (РіРі) |
28,3 |
8,0 |
АТФ (→ АМФ + PiPi) |
32,2 |
— |
АТФ (→ АДФ + Pi) |
30,4 |
7,3 |
АДФ |
28,3 |
7,3 |
Глюкозо-1-фосфат |
24,2 |
5,0 |
Самый высокий потенциал свободной энергии имеют фосфоэнолпируват, 1,3-дифосфоглицерат и креатинфосфат (табл. 3). Свободная энергия их гидролиза в стандартных (оптимальных) условиях достигает 12 ккал. Поэтому они легко переносят свою фосфатную группу на другие вещества, в первую очередь на АДФ, которая в клетке выполняет роль универсального акцептора высокоэнергетического фосфата и используется для образования АТФ.
АТФ находится в середине шкалы между веществами с высоким и низким потенциалом переноса фосфатной группы (см. табл. 3). Свободная энергия ее гидролиза ниже предыдущих соединений и составляет 7—8 ккал. Поэтому АТФ может переносить свой фосфат на вещества с более низким энергетическим потенциалом, например на глюкозу (рис. 12).
Макроэргические связи в молекуле АТФ довольно устойчивы в водной среде, тогда как более высокоэнергетические вещества в воде нестабильны. В связи с этим в молекулах АТФ накапливается свободная энергия и используется в нужный момент для выполнения биологической работы. Поэтому АТФ принадлежит главная роль в обмене энергии в клетках организма.
Имеющиеся в клетках другие нуклеотиды — ГТФ, УТФ, ЦТФ — также высокоэнергетические вещества, однако используются они как источники энергии только в отдельных биохимических процессах: ГТФ — при синтезе белка, УТФ — при синтезе полисахаридов, ЦТФ — при синтезе липидов.
Рис. 12 Роль цикла АТФ ⇆ АДФ в обмене энергии в клетках организма человека