Биологическая химия - Березов Т. Т., Коровкин Б. Ф. 1998

Гормоны
Молекулярные механизмы передачи гормонального сигнала

В этой главе были рассмотрены химическое строение большинства известных гормонов и других биологически активных гормоноподобных веществ, а также клиническая картина недостаточности или гиперпродукции. В ряде случаев приведены биологические эффекты гормонов без детального рассмотрения механизмов регуляции метаболизма. Несмотря на огромное разнообразие гормонов и гормоноподобных веществ, в основе биологического действия большинства гормонов лежат удивительно сходные, почти одинаковые фундаментальные механизмы, передающие информацию от одних клеток к другим. Далее будут представлены примеры механизмов действия гормонов пептидной (включая производные аминокислот) и стероидной природы. В современных представлениях о тонких молекулярных механизмах биологического действия большинства гормонов огромную роль сыграли исследования Э. Сазерленда и открытие циклического аденозинмонофосфата (см. далее).

Известно, что направленность и тонкая регуляция процесса передачи информации обеспечиваются прежде всего наличием на поверхности клеток рецепторных молекул (чаще всего белков), узнающих гормональный сигнал (см. Рецепторы инсулина). Этот сигнал рецепторы трансформируют в изменение концентраций внутриклеточных посредников, получивших название вторичных мессенджеров, уровень которых определяется активностью ферментов, катализирующих их биосинтез и распад.

По своей химической природе рецепторы почти всех биологически активных веществ оказались гликопротеинами, причем «узнающий» домен (участок) рецептора направлен в сторону межклеточного пространства, в то время как участок, ответственный за сопряжение рецептора с эффекторной системой (с ферментом, в частности), находится внутри (в толще) плазматической мембраны. Общим свойством всех рецепторов является их высокая специфичность по отношению к одному определенному гормону (с константой сродства от 0,1 до 10 нМ). Известно также, что сопряжение рецептора с эффекторными системами осуществляется через так называемый G-белок, функция которого заключается в обеспечении многократного проведения гормонального сигнала на уровне плазматической мембраны. G-белок в активированной форме стимулирует через аденилатциклазу синтез циклического АМФ, который запускает каскадный механизм активирования внутриклеточных белков.

Общим фундаментальным механизмом, посредством которого реализуются биологические эффекты «вторичных» мессенджеров внутри клетки, является процесс фосфорилирования — дефосфорилирования белков при участии широкого разнообразия протеинкиназ, катализирующих транспорт концевой группы от АТФ на ОН-группы серина и треонина, а в ряде случаев — тирозина белков-мишеней. Процесс фосфорилирования представляет собой важнейшую посттрансляционную химическую модификацию белковых молекул, коренным образом изменяющую как их структуру, так и функции. В частности, он вызывает изменение структурных свойств (ассоциацию или диссоциацию составляющих субъединиц), активирование или ингибирование их каталитических свойств, в конечном итоге определяя скорость химических реакций и в целом функциональную активность клеток.