Биотехнология - Ю.О. Сазыкин 2006

Общая биотехнология
Экологические аспекты биотехнологии
Экологические аспекты биотехнологического производства

Подчеркнем, что антропогенное воздействие на биосферу неотъемлемо от развития цивилизации. Распашка земель, вырубка лесов, «вытаптывание» степей постоянно сопутствуют истории человечества. Уместно вспомнить об уничтожении отдельных видов животных и растений и о расселении некоторых видов из мест коренного обитания.

В связи с особой актуальностью проблемы влияния промышленности на биосферу рассмотрим, как выглядит в этом отношении биотехнологическое производство. Прежде всего, оно наукоемко и по сравнению с химико-технологическим производством более эффективно, так как клетка продуцента (биообъекта) представляет «сбалансированный комплекс биокатализаторов», работающий более производительно, чем системы последовательных химических реакций с неорганическими катализаторами.

Потребление энергоресурсов и воды биотехнологической промышленностью составляет доли процента от потребляемого современной химической промышленностью. Выброс в атмосферу газообразных отходов предприятий биотехнологической промышленности не превышает и десятой доли процента от выброса промышленностью в целом. Именно биотехнологическое производство наиболее приемлемо в современных условиях, однако и оно имеет специфические, экологические проблемы и, соответственно, совершенствуется в направлениях:

✵ создания и использования более активных биообьектов-продуцентов (в результате на единицу продукции будет меньше отходов!);

✵ замены сред и реагентов на менее дефицитные;

✵ иммобилизации биообъектов (как клеток, так и ферментов), многократного их использования для уменьшения отходов;

✵ внедрения мембранной технологии на стадии выделения и очистки целевого продукта (уменьшение количества применяемых органических растворителей во избежание агрессивных условий на некоторых стадиях производственного процесса);

✵ соблюдения правил GMP.

Рассмотрим кратко проблемы, относящиеся к ликвидации (утилизации) или очистки производственных отходов традиционного биотехнологического предприятия.

Твердые отходы. Прежде всего, к ним относится мицелий (биомасса) продуцента после его отделения от культуральной жидкости и целевого продукта. О количестве мицелия, с которым приходится иметь дело, можно получить наглядное представление исходя из того, что объем слива промышленного ферментера — это 50—100 м3 густой, вязкой (из-за наличия мицелия) жидкости. Учитывая, что на предприятии имеется ряд ферментеров, а ферментационный цикл длится около недели, можно сделать вывод, что этот вид твердых отходов на одном (крупном) предприятии составляет сотни тонн в год. При этом необходимо учитывать, что мицелий содержит и остаточные количества целевого продукта, а это, как правило, биологически высокоактивные вещества.

В настоящее время твердые отходы ликвидируют путем переработки мицелия. Его перемешивают с почвой и помещают в ямы с бетонными подложками. Каждую такую яму оставляют закрытой на несколько лет. За это время почвенные микроорганизмы подвергают органические вещества мицелия ферментативному расщеплению, используя их для построения «своей» биомассы. Фактически образуется компост, органическая часть мицелия при этом разлагается. Бетонная подложка в такого рода «компостных ямах» необходима, чтобы предотвратить попадание еще неразложившихся растворимых органических веществ мицелия в грунтовые воды и водоемы с дождевой водой. Обычно для компостных ям выделяют специальные участки на территории предприятия. Отметим, что вывоз подсушенного мицелия (его масса по сравнению с первоначальной уменьшается в 10—100 раз) на общегородские свалки запрещен.

Попытки применения мицелия для тех или иных целей в целом пока не увенчались успехом, однако в лабораторных условиях уже создана малоотходная технология. Из мицелия актиномицета продуцента тетрациклина извлекалась суммарная липидная фракция и использовалась как пеногаситель в следующем производственном цикле при получении тетрациклина, образуемого продуцентом, принадлежащем к тому же штамму. В некоторых случаях (при ограниченности пастбищ) простерилизованную и перемолотую биомассу некоторых микроорганизмов используют в качестве добавки в корм сельскохозяйственных животных. Мицелий грибов и актиномицетов (отходы при производстве антибиотиков) повышает качество некоторых строительных материалов (керамзитовые плиты, кирпич и др.), увеличивая их прочность. Но по экономическим соображениям производить эти материалы нецелесообразно.

Жидкие отходы. В случае биотехнологического производства жидкими отходами являются стоки и сточная жидкость, в основном это культуральная жидкость после отделения от нее мицелия и извлечения целевого продукта. Суммарный годовой объем культуральной жидкости, которая должна подвергнуться очистке, составляет для одного предприятия десятки тысяч кубометров. Степень очистки, контролируемой разными методами, должна быть такой, чтобы очищенная жидкость могла сливаться в открытые водоемы.

Существуют разные схемы очистки. Почти во всех из них ключевую роль играют микроорганизмы (биологическая очистка). Приведем одну из таких схем (рис. 12). Первым компонентом системы очистки является железобетонный отстойник, куда попадает отработанная культуральная жидкость. На дне отстойника проложены трубы, через которые происходит отсасывание осадка. На этой стадии из культуральной жидкости удаляется примерно 40 % загрязнений. Следующий участок системы очистки состоит из одного или нескольких, расположенных один за другим, аэротенков — баков с проходящими по дну трубами, из которых выходит в виде пузырьков воздух, проходящий через всю толщу жидкости, в результате она насыщается кислородом. Воздух способствует интенсивному протеканию окислительных процессов. Ключевая особенность аэротенка — наличие в нем так называемого «активного ила» (искусственного биоценоза — сообщества микроорганизмов, окисляющих растворенные в жидкости органические вещества до СО2 и Н2О), постепенно формирующегося в процессе работы предприятия.

Image

Рис. 12. Схема биологической очистки жидких отходов:

1,3— соответственно первичный и вторичный железобетонные отстойники; 2 — аэротенк; 4 — блок доочистки

Видовой состав биоценоза активного ила на разных предприятиях может незначительно варьировать, поскольку последний зависит от окисляемых субстратов. Как правило, в нем доминируют представители рода Pseudomonas (70 %). Далее следуют микроорганизмы, объединенные в род Bacterium (20 %). Остальные 10% составляют представители родов Bacillus, Sarcina и другие микроорганизмы. Характеризуя активный ил как биоценоз или как над- организменное межвидовое сообщество применительно к очистке сточной жидкости биотехнологического производства, следует отметить три важных обстоятельства.

Во-первых, принципиальную роль здесь играют штаммы рода Pseudomonas, однако не следует сводить этот род только к виду Pseudomonas aeruginosa — известному возбудителю опасных раневых инфекций. В природных условиях род Pseudomonas представлен большим количеством не опасных для человека видов. Именно непатогенные штаммы входят в состав активного ила. Для этих микроорганизмов характерен широкий набор окислительных ферментов. Препараты, состоящие из клеток Pseudomonas, используются при ликвидации загрязнений, вызванных утечкой нефти. Окислению подвергаются, образно говоря, и экзотические субстраты, например, кольчатые углеводороды. Помимо этого оболочка сапрофитных видов Pseudomonas, входящих в активный ил, имеет свои особенности на уровне пориновых каналов, облегчающие доступ субстратов к окислительным ферментам.

Во-вторых, превращение некоторых субстратов в СО2 и Н2О осуществляется за счет последовательного воздействия на них ферментов разных микроорганизмов. Иными словами, одна ферментная система превращает конкретное соединение в промежуточные продукты, а другая катализирует дальнейшую деградацию этих промежуточных продуктов. Этим подчеркивается, что активный ил функционирует как комплекс микроорганизмов.

В-третьих, следует иметь в виду, что в сточных водах некоторых производств (в частности, предприятий антибиотической промышленности) могут содержаться остаточные количества антимикробных веществ. Это означает, что микроорганизмы в аэротенках постоянно контактируют с ними, т.е. создаются условия для селекции резистентных форм. Но не исключены случаи, когда концентрация антимикробных веществ в очищаемых жидких отходах может оказаться необычно высокой и вызвать гибель клеток активного ила.

Это требует контроля за состоянием активного ила. После участка с аэротенком или несколькими последовательно расположенными аэротенками и вторичным отстойником принципиально важным для системы жидких отходов является «блок доочистки». В нем культуральная жидкость, в которой остается примерно 10 % первоначального содержания органических веществ (как правило, это трудноокисляемые вещества), пропускается через биофильтры — пленки с иммобилизованными клетками микроорганизмов с наиболее высокой окислительной активностью. Нередко эти клетки принадлежат к сконструированным методами генной инженерии штаммам, содержащим плазмиды, несущие гены окислительных ферментов (ферментов деструкции). Такие целенаправленно полученные «штаммы-деструкторы» способны окислять трудноокисляемые вещества и уничтожать оставшиеся 10% загрязнений в очищаемой жидкости.

Иммобилизация клеток таких штаммов в биопленках рациональна ввиду того, что при свободном размножении этих клеток искусственно повышенная окислительная активность может быть утрачена за счет обратных мутаций или потери плазмид. В этом случае в «блоке доочистки» как бы «сочетаются» генная инженерия и инженерная энзимология. Прошедшая «блок доочистки» жидкость, соответствующая официальным критериям питьевой воды (одним из принятых методов контроля токсичности в данном случае является подавление жизнеспособности микроскопического ракообразного Daphnia magna), хлорируется и затем поступает в открытые водоемы.

Касаясь работы систем биологической очистки сточных вод в разных режимах, следует отметить, что при максимальных («шоковых») нагрузках могут возникнуть разные трудности. В такие рабочие периоды в аэротенки вносят высокоактивные штаммы деструкторы («бактериальные закваски»), что позволяет значительно усилить пропускную способность системы очистки жидких отходов. С этой целью для биотехнологических предприятий разного профиля рекомендованы специальные препараты: «Phenobac» — для утилизации углеводородов, «Thermobac» — для окисления полисахаридов, «Polibac» — для освобождения от синтетических детергентов и т.п. Ориентировочная доза «бактериальной закваски» из живых клеток составляет около 100 мг на 1 м3 сточной жидкости.

В заключение отметим возможное разнообразие схем биологической утилизации жидких отходов. Так, помимо аэробной очистки в схему могут быть включены: этап анаэробной очистки, этапы с использованием сорбентов (активированного угля, цеолитов и др.), этапы с применением электрохимических методов (например, электрокоагуляции).

Газообразные отходы. Газовые выбросы очищают от органических соединений при температуре от 300 до 1000 °С в колонках с неорганическими катализаторами. В этом случае летучая «органика» превращается в СО2. В некоторых случаях используются биологические фильтры на основе микроорганизмов, окисляющих органические вещества до СО2.

Контрольные вопросы

1. Каков общий вклад биотехнологии в решение современных экологических проблем?

2. Что собой представляют биотехнологические отходы?

3. Какие основные виды микроорганизмов присутствуют в «активном иле»?

4. Какие существуют схемы по очистке твердых, жидких и газообразных отходов?

5. Какова роль генной инженерии в экологии?

6. Что собой представляют сигнально-коммуникативные молекулы в надорганизменных системах, и каковы перспективы их использования для поддержания экологии?

7. Какие виды феромонов существуют?

3. Каковы особенности биотехнологических производств в отношении их отходов?

9. Какие коммерческие препараты используются в качестве «бактериальной закваски»?

10. По каким направлениям можно совершенствовать биотехнологическое производство в плане экологической безопасности?