Биохимия и молекулярная биология - Белясова Н.А. 2002

Структура и функции клеточных компонентов
Биомембраны
Рецепторные функции мембран

Все клетки должны обладать системами, позволяющими определять со­стояние и изменения окружающей среды, чтобы адаптироваться к ним. Эти системы представляют собой разнообразные рецепторные молекулы, которые располагаются в поверхностных структурах, чаще всего — в плазматических мембранах, реже — в клеточных стенках, причем у грамотрицательных бак­терий — в наружной мембране. Функция рецепторных молекул и их ассоциаций состоит во взаимодействии с внеклеточными компонентами и иницииро­вании специфического клеточного ответа.

Рецепторные молекулы в большинстве случаев представлены белками, но эту роль могут выполнять и другие молекулы, например гликолипиды, глико­протеины или сфинголипиды. Так, показано, что ганглиозиды служат местом связывания холерного и столбнячного токсинов, а также участвуют в регуля­ции процессов клеточного роста и дифференцировки.

Среди огромного разнообразия клеточных рецепторов можно выделить несколько основных типов. В поверхностных структурах бактериальных, дрожжевых, животных клеток присутствуют рецепторы, определяющие спо­собность клеток распознавать друг друга, взаимодействовать, образуя скоп­ления, а также связываться с нерастворимыми компонентами внеклеточного матрикса. Примером рецепторов указанного типа служат белковые ворсинки, обнаруженные у патогенных штаммов E. coli, которые вызывают инфекцион­ные заболевания мочевых путей человека. Ворсинки крепятся в наружной мембране и содержат на конце рецепторный белок — адгезин, способный специфически связываться с дигалактозидсодержащими гликолипидами. Эти липиды присутствуют на поверхности эпителиальных клеток, выстилающих мочевые пути, где размножаются бактерии.

Другой класс рецепторов представлен молекулами, расположенными в плазматических мембранах организмов и связывающими питательные веще­ства и метаболиты. Эти рецепторы участвуют в процессах эндо- и экзоцитоза, определяя специфичность этих видов транспорта.

Более сложные рецепторные реакции сопровождаются связыванием ре­цептора с метаболитом, гормоном или нейромедиатором, передачей сигнала внутрь клетки и следующим затем клеточным ответом. К подобному классу рецепторов относятся, например, белки бактерий, ответственные за хемотак­сис. В составе плазматической мембраны E. coli присутствует рецептор для аспартата, который представляет собой трансмембранный белок. Этот белок осуществляет связывание аспартата, что влечет за собой конформационное изменение в той части молекулы, которая обращена в цитоплазму. Это изме­нение и служит сигналом, заставляющим опосредованным образом (через фосфорилирование другого белкового компонента системы) вращаться жгу­тики. В результате клетка перемещается по градиенту концентрации аспартата, получая возможность использовать его в качестве питательного субстрата. Клеточный ответ на сигнал, обусловленный рецепцией специфического веще­ства, может выражаться также в активации транскрипции отдельных генов. В такую рецепторную систему входит белок-регулятор, находящийся, по-видимому, в цитоплазме в растворимой форме. Считается, что рецепторы каким-то образом модифицируют регуляторные белки, и затем последние активируют транскрипцию.

Аналогичным образом происходит передача сигнала при связывании лиганда (нейромедиатора или гормона) со специфическим рецептором на наружной поверхности мембраны животной клетки. Это событие инициирует конформационный переход в молекуле рецептора и следующий затем каскад событий в клетке, который может включать открывание канала (никотиновый ацетилхолиновый рецептор), фосфорилирование клеточных белков, сопровождающееся изменением их активности, образование комплекса с G-белками. В последнем случае G-белки активируются, высвобождаются из комплекса и диффундируют к клеточным мишеням, вызывая специфический ответ. Одной из наиболее распространенных мишеней G-белков является аденилатциклаза (катализирует образование сАМР). Конформационное изменение этого фер­мента приводит к изменению внутриклеточной конценрации сАМР, который, как известно (глава 3), служит вторым посредником, влияя на множество внутриклеточных процессов.

Наконец, многие клетки имеют в составе мембран рецепторы, способные в ответ на стимул (внешний сигнал) генерировать нервный импульс. Нервный импульс, возникший в мембране специализированной рецепторной клетки передается через синапсы по отросткам центростремительных нервных кле­ток к центральной нервной системе, а затем по отросткам центробежных нервных клеток — к мышце или железе. В клетках скелетных мышц при этом возбуждается ацетилхолиновый рецептор и возникает потенциал действия, а через короткий промежуток времени (около 35 мс) происходит сокращение за счет движения актина и миозина внутриклеточных миофибрилл.

Специализированные рецепторные клетки у высших животных и человека могут формировать органы чувств. Работа этих органов основана на измене­нии электрических характеристик рецепторных клеток в ответ на специфиче­ский стимул, т. е. на свойстве клеток генерировать нервный импульс. Более подробно эти процессы рассмотрены в главе 13 на примере функционирова­ния органа зрения.