БИОЛОГИЯ Том 1 - руководство по общей биологии - 2004

9. ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ

9.4. Газообмен

9.4.4. Насекомые, например саранча

У насекомых газообмен осуществляется через систему трубочек, так называемых трахей. Такая система позволяет кислороду поступать из воздуха прямо к тканям и необходимость в его транспортировке кровью отпадает. Это гораздо более быстрый способ, нежели диффузия растворенного кислорода сквозь ткани; такой газообмен создает условия для высокой интенсивности метаболизма.

Дыхальца — парные отверстия, имеющиеся на втором и третьем грудном и на первых восьми брюшных сегментах тела насекомого, ведут в воздушные полости. От этих полостей отходят разветвленные трубочки — трахеи (рис. 9.15). Каждая трахея выстлана эпителием, секретирующим тонкий слой хитинового материала. Обычно этот жесткий слой еще более укреплен спиральными и кольцевыми утолщениями, благодаря которым воздухоносные пути остаются открытыми, даже если в просвете трахей давление оказывается отрицательным (сравните с хрящевыми кольцами в трахее и бронхах человека). В каждом сегменте тела трахеи разветвляются на многочисленные более мелкие трубочки, называемые трахеолами; трахеолы тоже ветвятся, пронизывая ткани насекомого, и в наиболее активных тканях, например в летательных мышцах, оканчиваются слепо внутри отдельных клеток. Степень ветвления трахеол может меняться в зависимости от метаболических нужд тканей.

Рис. 9.15. А. Система трахей у саранчи. Б. Строение трахеи насекомого.

В трахеолах хитиновая выстилка отсутствует. В состоянии покоя они наполнены водянистой жидкостью (рис. 9.16); в это время кислород диффундирует по ним к тканям (а СО2 — в обратном направлении) со скоростью, вполне достаточной для удовлетворения потребностей насекомого. В активном состоянии усиление метаболической активности мышц ведет к накоплению определенных метаболитов, в частности молочной кислоты, и в тканях соответственно повышается осмотическое давление. Когда это происходит, жидкость из трахеол под действием осмотических сил частично всасывается в ткани, и в трахеолы поступает больше воздуха, а значит, и больше кислорода, причем этот кислород подается непосредственно к тканям как раз тогда, когда они в нем нуждаются.

Рис. 9.16. Условия, создающиеся в тканях насекомого в покое и в активном состоянии (работа трахеол).

Общий поток воздуха, проходящий через тело насекомого, регулируется механизмом, закрывающим дыхальца. Отверстие каждого дыхальца снабжено системой клапанов, управляемых очень мелкими мышцами. Края этого отверстия покрыты волосками, которые препятствуют попаданию в дыхальца чужеродных частиц и предотвращают излишнюю потерю влаги. Величина отверстия регулируется в зависимости от количества СО2 в теле насекомого.

Усиленная активность ведет к усиленному образованию СО2. Хеморецепторы улавливают это и дыхальца открываются. Тот же стимул может вызывать и вентиляционные движения тела, особенно у крупных насекомых, таких как саранча. Дорсовентральные мышцы, сокращаясь, делают тело насекомого более плоским, вследствие чего объем трахейной системы уменьшается и воздух выталкивается из нее наружу («выдох»). Всасывание воздуха («вдох») происходит пассивно, когда сегменты тела благодаря своей эластичности принимают исходную форму.

Судя по некоторым данным, грудные и брюшные дыхальца открываются и закрываются попеременно, и это в сочетании с вентиляционными движениями тела создает однонаправленный поток воздуха, который входит в тело насекомого через грудной отдел и выходит через брюшной.

Трахейная система, безусловно, весьма эффективна в смысле газообмена, однако следует учитывать, что газообмен определяется у большинства насекомых исключительно диффузией кислорода через ткани насекомого. Диффузия же, как известно, эффективна только на малых расстояниях, и это накладывает жесткие ограничения на размеры, которых могут достигать насекомые. Эти малые расстояния, на которых диффузия достаточно эффективна, не превышают 1 см; поэтому, хотя и встречаются насекомые длиной до 30 см, их тело не должно при этом иметь в толщину более 2 см.