Молекулярная биотехнология. Принципы и применение - Глик Б., Пастернак Дж. 2002

Основы молекулярной биотехнологии
ДНК, РНК и синтез белка
Заключение

Молекула ДНК состоит из двух антипараллельных полинуклеотидных цепей, образующих двойную спираль. Их мономерной единицей является нуклеотид, который состоит из азотистого основания, дезоксирибозы и фосфатной группы. Соседние нуклеотиды в цепи связаны фосфодиэфирными связями, а цепи удерживаются вместе с помощью водородных связей, образующихся между комплементарными основаниями. При этом аденин образует водородные связи только с тимином, гуанин — только с цитозином. Процесс удвоения ДНК называется репликацией. В нем участвует множество различных белков, прежде всего ДНК-полимеразы. Каждая из цепей ДНК служит матрицей для синтеза комплементарной цепи. Комплемен- тарность оснований противоположных цепей гарантирует идентичность новосинтезированной и исходной ДНК.

Ключевую роль в осуществлении всех биологических функций играют белки. Белковая молекула — это полипептид, состоящий из аминокислот, которые соединены друг с другом пептидными связями. Последовательность аминокислот в белке определяется последовательностью нуклеотидов в ДНК. В синтезе белков участвуют молекулы РНК (мРНК, рРНК и тРНК), различные ферменты и белковые факторы. Все РНК синтезируются на ДНК как на матрице; этот процесс называется транскрипцией. Правильность транскрипции, т. е. ее начало и завершение в нужных сайтах, обеспечивают специфические нуклеотидные последовательности в ДНК и белковые факторы. У эукариот большинство структурных генов состоит из кодирующих (экзоны) и некодирующих (интроны) участков. Первичные транскрипты содержат как те, так и другие. Однако по окончании транскрипции интроны вырезаются, а экзоны сшиваются с образованием функциональной мРНК. В мРНК содержится в закодированном виде информация о последовательности аминокислот в молекуле соответствующего белка.

Синтез белка называется трансляцией. Важную роль в нем играют молекулы тРНК и рРНК. В клетке присутствует более 50 разных тРНК. Каждая из них строго специфически связывается своим 3'-концом с одной из 20 аминокислот. На 5'-конце тРНК находится последовательность из трех нуклеотидов (антикодон), обеспечивающая связывание тРНК с комплементарным участком из трех нуклеотидов в молекуле мРНК. Существуют две основные разновидности рРНК: малая и большая. Они объединяются соответственно с малой и большой субъединицами рибосомы — особой структуры, в которой и протекает синтез белка. У прокариот молекулы рРНК имеют меньший размер, чем у эукариот.

У прокариот трансляция начинается со связывания мРНК с малой рибосомной субъединицей. Затем происходит комплементарное спаривание первого кодона мРНК с антикодоном инициаторной тРНК (fMet-тРНК), к образовавшемуся комплексу присоединяется большая рибосомная субъединица, и образуется комплекс инициации (инициаторный комплекс), готовый к синтезу полипептидной цепи.

У эукариот трансляция начинается с присоединения инициаторной тРНК, которая несет остаток метионина (Met-TPHKMet), к малой рибосомной субъединице; с этой же субъединицей связывается своим 5'-концом мРНК. Малая субъединица перемещается вдоль мРНК до тех пор, пока не дойдет до первого AUG-кодона. Этот кодон образует комплементарную пару с антикодоном UAC инициаторной тРНК. Далее к этому комплексу присоединяется большая субъединица, и образуется рибосома, готовая к синтезу белка.

Элонгация и терминация трансляции у про- и эукариот во многом сходны. После образования инициаторного комплекса следующий кодон мРНК спаривается с антикодоном тРНК, несущей соответствующую аминокислоту (обозначим ее АК2). Первая аминокислота в полипептидной цепи, метионин, отщепляется от тРНК и соединяется с АК2 с помощью пептидной связи. Свободная тРНКМеt покидает рибосому. Рибосомный комплекс перемещается вдоль молекулы мРНК, и пептидил-тРНК, т. е. комплекс Met-АК2-тРН КАК2, занимает место, освобожденное отделившейся тРНК. Следующий кодон мРНК спаривается с соответствующим антикодоном тРНК, несущим аминокислоту АКЗ. АК2 отщепляется от своей тРНК и соединяется с АКЗ с помощью пептидной связи, образуя комплекс Меt-АК2-АКЗ-тРНКАК3. Освободившаяся от аминокислоты тРНК покидает рибосому. Рибосомный комплекс опять перемещается вдоль молекулы мРНК, и Мет-АК2- АКЗ-тРНКAKЗ занимает вакантное место, занимаемое прежде предыдущей пептидил-тРНК. Эти события повторяются до тех пор, пока рибосома не дойдет до стоп-кодона. Антикодона, который был бы комплементарен стоп-кодону, нет ни у одной из тРНК. Однако стоп-кодон распознается неким белковым фактором освобождения; после присоединения этого фактора к рибосоме связь между последней тРНК и синтезированным полипептидом гидролизуется, тРНК, мРНК и полипептид высвобождаются, а рибосома диссоциирует на субъединицы.

Синтез мРНК и соответственно синтез белка должны строго регулироваться, поскольку у клетки недостаточно ресурсов для одновременной транскрипции и трансляции всех структурных генов. И про-, и эукариоты постоянно синтезируют только те мРНК, которые необходимы для выполнения основных клеточных функций. Экспрессия остальных структурных генов осуществляется под строгим контролем регуляторных систем, запускающих транскрипцию только в том случае, когда возникает потребность в определенном белке (белках). У прокариот транскрипция инициируется связыванием РНК-полимеразы с последовательностями ТАТА и TTGAC промоторной области структурного гена или оперона. Включение или выключение некоторых оперонов осуществляется при участии эффектора, который изменяет конформацию белка-репрессора и препятствует блокированию транскипции. При уменьшении концентрации эффектора в клетке репрессор связывается с участком ДНК, примыкающим к сайту инициации транскрипции, и препятствует перемещению РНК-полимеразы вдоль молекулы ДНК, блокируя таким образом транскрипцию. В других оперонах с участком ДНК, соседствующим с сайтом инициации траскрипции, связывается белок-активатор, который увеличивает скорость транскрипции. Связывание эффектора с активатором может снижать скорость транскрипции. ДНК-белковые взаимодействия, ответственные за регуляцию транскрипции, строго специфичны в отношении определенных структурных генов или оперонов. У эукариот РНК-полимераза II, которая транскрибирует структурные гены, связывается с целым набором белков — факторов транскрипции, которые последовательно присоединяются к ТАТА-последовательности промоторной области. За включение и выключение транскрипции отвечают дополнительные факторы транскрипции, которые связываются с соответствующими участками ДНК.

ЛИТЕРАТУРА

Buratowski S. 1994. The basics of basal transcription by RNA polymerase II. Cell 77: 1—3.

Kozak M. 1991. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266: 19867-19870.

Lodish H., D. Baltimore, A. Berk, S.L. Zipursky, P. Matsudaira, J. Darnell. 1995. Molecular Cell Biology. 3rd ed. Scientific American Books, Inc., New York, N.Y.

Nakamura Y., K. Ito, L.A. Isaksson. 1996. Emerging understanding of translation termination. Cell 87: 147-150.

Schoenherr C.J., D.J. Anderson. 1995. The neuron- restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267: 1360—1363.

Tate W.P., C.M. Brown. 1992. Translational termination: «stop» for protein synthesis or «pause» for regulation of gene expression. Biochemistry 31: 2443-2450.

Tjian R., T. Maniatis. 1994. Transcriptional activation: a complex puzzle with few easy pieces. Cell 77: 5-8.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Опишите в общих чертах процесс репликации ДНК.

2. Чем различаются ДНК и РНК?

3. Опишите сходство и различие структурных генов про- и эукариот.

4. Опишите процесс элонгации полипептидной цепи.

5. Какова наиболее вероятная нуклеотидная последовательность, кодирующая следующую аминокислотную последовательность: MAGGTWYQLFPRKMWNDSTLHPFILPMNVAG.

6. Какой аминокислотной последовательности отвечает следующая нуклеотидная последовательность:

GCGAUCGACGAUGUUUCUAAAAGUAUCUСAUCGAAAUGAGGGUUCGUAAUAGCGACCCGGGCGG.

7. Что такое ТАТА-бокс?

8. Что такое оперон? В чем заключается его биологическая роль?

9. Расскажите о трех разных способах регуляции транскрипции у прокариот.

10. Опишите основные элементы ДНК, ответственные за транскрипцию эукариотических структурных генов.