Молекулярная биология клетки - Том 1 - Албертс Б., Брей Д., Льюис Дж., Рэфф М., Робертс К., Уотсон Дж. 1994

Введение в биологию клетки
Малые молекулы, энергия и биосинтез
Упорядоченность биологических систем и энергия

Клетки должны подчиняться законам физики и химии. Принципы механики и закон сохранения и превращения энергии можно применить к клетке точно так же, как и к паровой машине. Однако нельзя не признать, что клеткам присущ ряд особенностей, которые приводят нас в замешательство и на первый взгляд, казалось бы, ставят клетки в особое положение. Как показывает повседневная практика, все, что предоставлено самому себе, в конце концов приходит в неупорядоченное состояние: здания разрушаются, мертвые организмы подвергаются гниению и т.д. Эта общая тенденция выражена во втором законе термодинамики, который гласит, что в любой изолированной системе степень неупорядоченности может только возрастать.

Озадачивает то обстоятельство, что живые системы на всех уровнях организации в высшей степени упорядочены. Порядок с удивительной ясностью виден и в больших структурах, таких, как крыло бабочки или глаз осьминога, и в субклеточных образованиях, например в митохондриях или жгутике, и в форме и расположении составляющих их молекул. Множество атомов собрано в исключительно точные структуры, а ведь в конечном счете все они были извлечены из окружающей среды, где находились в крайне неорганизованном состоянии. Даже неделящимся клеткам для выживания требуется поддержание постоянного порядка. Поскольку все организованные структуры клетки подвержены нарушениям, необходимы системы, исправляющие их. Каким же образом это укладывается в рамки термодинамики? Далее мы увидим, что ответ на этот вопрос заключается в следующем: клетка постоянно выделяет теплоту в окружающую среду и, следовательно, с точки зрения законов термодинамики не является изолированной системой.

2.2.1. Упорядоченность биологических систем обусловлена выделением клеткой тепловой энергии [7]

Некоторые принципы термодинамики легче усвоить, если клетку и ее ближайшее окружение рассматривать как закрытый ящик, который находится в однородном море вещества, представляющего собой остальную часть Вселенной (рис. 2-11). Для того, чтобы расти и обеспечивать свое существование, клетка должна постоянно поддерживать порядок внутри ящика. Однако, как уже было сказано, второй закон термодинамики гласит, что упорядоченность замкнутой системы должна всегда уменьшаться. Из этого следует, что возрастание упорядоченности внутри ящика всегда должно с избытком компенсироваться даже более интенсивным повышением неупорядоченности остальной части Вселенной. Хотя никакого обмена молекулами между ящиком и окружающей средой не происходит, они могут обмениваться теплотой - в этом количественно проявляется взаимосвязь между теплотой и порядком. Тепло представляет собой энергию хаотического движения молекул, т.е. энергию в наиболее неупорядоченной ее форме. Клетка, выделяя теплоту в пространство, увеличивает интенсивность движения молекул, вследствие чего возрастает хаотичность, или неупорядоченность, этого движения.

Рис. 2-11. Для простого термодинамического анализа живой клетки можно использовать следующий подход: считается, что клетка и ее ближайшее окружение находятся в запаянном ящике, в котором они могут обмениваться с остальной частью Вселенной теплотой, но при этом не могут обмениваться молекулами. На верхнем рисунке молекулы клетки и остальной части Вселенной изображены в относительно неупорядоченном состоянии. На нижнем рисунке из клетки выделилось тепло в результате реакции, которая привела к упорядочению содержащихся в клетке молекул. Возрастание беспорядочного движения (в том числе деформаций связей) молекул остальной части Вселенной создает неупорядоченность, которая с избытком компенсирует увеличение упорядоченности в клетке, что находится в соответствии с законами термодинамики для спонтанных процессов. Таким образом, выделение клеткой тепла в окружающее пространство позволяет ей создавать более высокую степень внутренней упорядоченности. В то же время Вселенная в целом становится более неупорядоченной.

Существование количественного соотношения между теплотой и упорядоченностью, открытое в конце XIX столетия, в принципе дает нам возможность рассчитать, какое количество теплоты должна выделить клетка, чтобы компенсировать определенную степень упорядоченности внутри нее (такой, как сборка белков из аминокислот), причем суммарный процесс должен увеличивать степень неупорядоченности всей Вселенной. Такое соотношение можно получить, рассмотрев характер изменения движения молекул в результате перехода определенного количества тепловой энергии от горячего тела к холодному. Здесь нет необходимости представлять детальный расчет подобного процесса, отметим только, что химические реакции, которые протекают с выделением тепла, должны быть тесно связаны на молекулярном уровне именно с процессами, приводящими к упорядочению. Такие связанные между собой реакции, называются сопряженными; мы их рассмотрим позднее. Неразрывная связь между образованием тепла и повышением степени упорядоченности и отличает метаболизм клетки от расточительного процесса сгорания топлива.

На рис. 2-11 очень схематично показано, каким образом указанные сопряженные реакции выделяют тепловую энергию, приводящую к разупорядочению внеклеточной среды, вследствие чего компенсируется возрастание упорядоченности внутри клетки, происшедшее в результате этих реакций. Повышение степени неупорядоченности Вселенной - это именно тот процесс, благодаря которому протекание сопряженных реакций приводит к повышению упорядоченности внутри клетки.

Энергия не может возникать или исчезать в ходе химических реакций, поэтому постоянные потери тепла клеткой, приводящие к биологическому упорядочению, требуют непрерывного ввода энергии в клетку. Энергия должна существовать в форме, отличной от тепловой. Для растений первичным источником энергии служит электромагнитное излучение Солнца, животные же используют энергию ковалентных связей органических молекул, поступающих в организм с пищей. Однако, поскольку эти органические питательные вещества сами производятся фотосинтезирующими организмами, например зелеными растениями, первичным источником излучения для организмов обоих типов служит Солнце.

2.2.2. Фотосинтезирующие организмы используют солнечный свет для синтеза органических соединений [8]

Утилизация солнечной энергии живой природой (биосферой) происходит в результате фотосинтеза, осуществляемого фотосинтезирующими организмами - растениями и бактериями. В процессе фотосинтеза электромагнитная энергия преобразуется в энергию химических связей. Но в то же время часть энергии солнечного света переходит в тепло, и как раз выделение этого тепла в окружающее пространство увеличивает неупорядоченность Вселенной, что и является движущей силой процесса фотосинтеза.

Рис. 2-12. Две стадии фотосинтеза у зеленых растений.

Реакции фотосинтеза подробно описываются в гл. 7; вообще говоря, они осуществляются в ходе двух различных фаз. В первой фазе (световые реакции) под действием квантов света электрон в молекуле пигмента переходит в возбужденное состояние; затем при возвращении к более низкому энергетическому уровню освобождается энергия, необходимая для синтеза таких молекул, как АТР и NADPH. Во второй фазе (темповые реакции) АТР и NADPH используются для поддержания ряда реакций фиксации углерода, в которых из углекислого газа воздуха образуются молекулы Сахаров (рис. 2-12).

Суммарный результат фотосинтеза (если речь идет о зеленых растениях) может быть записан в виде уравнения

Энергия + СО2 + Н2О + Сахар + О2,

т. е. обратного уравнению окислительного распада сахара. За этим простым выражением скрывается сложная природа темновых реакций, включающих множество взаимосвязанных парциальных реакций. Более того, тогда как первоначальная фиксация СО2 приводит к образованию Сахаров, последующие метаболические реакции быстро преобразуют эти сахара в другие малые или большие молекулы, необходимые растительной клетке.

2.2.3. Химическая энергия переходит от растений к животным

Животные и другие нефотосинтезирующие организмы не способны непосредственно утилизировать энергию солнечного света, поэтому они вынуждены существовать за счет энергии, получаемой «из вторых рук», т.е. поедая растения, или даже «из третьих рук» - поедая других животных. Органические молекулы, синтезируемые растительными клетками, обеспечивают питающиеся этими растениями организмы как строительными белками, так и запасом «топлива». Подобным целям могут служить растительные молекулы всех типов - сахара, белки, полисахариды, липиды и многие другие.

Не все взаимодействия между растениями и животными столь однонаправлены. Растения, животные и микроорганизмы так долго сосуществовали на нашей планете, что многие стали для других организмов необходимым элементом окружающей среды. Кислород, выделяющийся при фотосинтезе, потребляется почти всеми организмами для окисления органических молекул; часть молекул СО2, которая сегодня фиксируется с образованием более крупных органических молекул в процессе фотосинтеза, осуществляемого в зеленых листьях, еще вчера была выделена в атмосферу при дыхании животного. Таким образом, утилизация углерода - циклический процесс, который охватывает всю биосферу и устанавливает связи между отдельными организмами (рис. 2-13). Подобно этому, атомы азота, фосфора и серы могут переходить от одной биологической молекулы к другой в серии аналогичных циклов.

Рис. 2-13. Круговорот углерода. Отдельные атомы углерода включаются в органические молекулы живой природы в результате фотосинтетической активности растений, бактерий и морских водорослей. Эти атомы поступают в клетки животных и микроорганизмов, а также в органические соединения почвы и океанов по циклическим путям. Когда органические молекулы окисляются клетками или сжигаются людьми в качестве природного топлива, СО2 возвращается в атмосферу.

2.2.4. Клетки получают энергию в результате окисления биологических молекул [9]

Атомы углерода и водорода в клетке находятся далеко не в самом стабильном состоянии. Поскольку земная атмосфера содержит огромное количество кислорода, энергетически наиболее стабильной формой существования углерода является СО2, а кислорода - Н2О. Следовательно, клетка может получать энергию из молекул белков или глюкозы, создавая подходящие условия для того, чтобы атомы углерода и водорода этих молекул соединялись с кислородом, образуя соответственно СО2 и Н2О. Однако окисление молекул в клетке осуществляется не в одну стадию, как, например, при горении. Молекулам приходится пройти через большое число реакций, из которых лишь очень немногие включают в себя непосредственное присоединение кислорода. Для того чтобы мы могли рассмотреть все эти реакции и понять, какие движущие силы за ними скрываются, нам необходимо создать себе ясное представление о процессе окисления.

Окисление в вышеописанном значении этого слова не ограничивается лишь присоединением атома кислорода; этот термин носит скорее более общий характер и применим к любой реакции, в которой электроны переходят от одного атома к другому. В таком смысле окислением можно назвать удаление электронов, а восстановлением (процессом, обратным окислению) - присоединение электронов. Так, Fe2+ окисляется, если теряет электрон, и превращается в Fe3+, а атом хлора восстанавливается, если он получает электрон и переходит в Сl-. Та же терминология используется, когда речь идет лишь о частичном смещении электронов в случае атомов, связанных ковалентной связью. Например, когда атом углерода ковалентно связывает такой электроотрицательный атом, как кислород, хлор или сера, он как бы в определенной степени уступает им свой электрон, приобретая частичный положительный заряд, и может считаться окисленным. И наоборот, в связи С—Н электроны в большей степени смещены к атому углерода, поэтому можно считать, что он восстановлен (рис. 2-14).

При «сгорании» питательных веществ в клетке атомы С и Н органических молекул (находящихся в сравнительно богатом электронами, или восстановленном, состоянии) превращаются в СО2 и Н2О, в которых они отдают свои электроны кислороду и поэтому сильно окислены. Перенос электронов от углерода и водорода к кислороду позволяет всем этим атомам достичь наиболее стабильного состояния и является поэтому энергетически выгодным.

Рис. 2-14. Атом углерода метана включается в диоксид углерода путем последовательного удаления атомов водорода. На каждом этапе электроны все дальше смещаются от атома углерода, по мере того как он переходит в более стабильное энергетическое состояние (иначе говоря, становится все более окисленным).

2.2.5. Распад органических молекул осуществляется в результате последовательных ферментативных реакций [10]

Хотя энергетически наиболее выгодной формой существования углерода является СО2, а водорода - Н2О, живой организм не обращается в дым по той же причине, по которой книга в вашей руке не вспыхивает пламенем: и организм, и книга суть метастабильное энергетическое состояние вещества (рис. 2-15), которое нуждается в энергии активации для перехода в более стабильную форму. В случае с книгой энергия активации может быть получена от зажженной спички. Для живой клетки тот же конечный результат может достигаться не столь радикальным и разрушительным способом. Высокоспецифичные белковые катализаторы, или ферменты, соединяются с биологическими молекулами таким образом, что снижают энергию активации тех конкретных реакций, в которые могут вступить данные молекулы. Избирательно понижая энергию активации той или иной последовательности реакций (метаболического пути), ферменты определяют, какая из нескольких альтернативных возможностей будет реализована (рис. 2-16). Именно таким путем различные молекулы клетки направляются по специфическим последовательностям реакций, что в конечном счете и определяет химизм клетки.

Процветание различных форм жизни в значительной степени можно приписать способности клеток к образованию большого числа специфических ферментов. Каждый фермент представляет собой белок с уникальной трехмерной структурой (конформацией), формирующей активный центр, в котором определенный набор молекул (субстратов) связывается с поверхностью фермента. Связывание субстрата с ферментом приводит к тому, что скорость одной из многих химических реакций, которым может подвергнуться субстрат, зачастую возрастает в 1014 раз. Подобно всем другим катализаторам, молекулы ферментов не претерпевают никаких изменений после завершения процесса катализа и могут поэтому вновь и вновь выполнять свои функции.

Рис. 2-15. Схема, поясняющая принцип действия энергии активации. Соединение X может достигнуть более низкого энергетически выгодного состояния путем превращения в соединение Y. Однако такого перехода не произойдет до тех пор, пока X не получит энергии активации, достаточной для того, чтобы это соединение могло вступить в реакцию.

Рис. 2-16. «Модель качающегося ящика», иллюстрирующая, каким образом ферменты направляют молекулы в нужные метаболические пути. В этой модели раскрашенный мяч (соединение X) представляет собой возможный субстрат ферментативной реакции; мяч скачет вверх и вниз благодаря непрерывной бомбардировке сталкивающимися молекулами воды. Четыре стенки ящика изображают энергию активации (энергетический барьер) для четырех различных энергетически выгодных химических реакций. В ящике слева ни одна из этих реакций не осуществляется, так как энергии, получаемой мячом при столкновениях, недостаточно для преодоления какого-либо из энергетических барьеров. В правом ящике ферментативный катализ понижает энергию активации лишь для реакции 1, поэтому осуществление данной реакции (превращение соединения X в соединение Y) возможно при имеющемся количестве энергии.

2.2.6. Часть энергии, выделенной в реакциях окисления, расходуется на образование АТР [11]

Клетки получают необходимую энергию в результате «сгорания» глюкозы только потому, что они «сжигают» ее в очень сложных и тонко контролируемых процессах. Синтетические, или анаболические, химические реакции, обусловливающие упорядоченность биологических систем, тесно связаны с реакциями распада (катаболическими реакциями), поставляющими энергию. Принципиальное различие между сопряженной и несопряженной катаболическими реакциями хорошо иллюстрируется механической аналогией. На рис. 2-17 энергетически выгодная химическая реакция показана на примере падения булыжников с утеса. Кинетическая энергия падающих булыжников, как правило, целиком преобразуется в тепло при ударе их о землю (рис. 2-17, А). Однако при продуманном подходе часть кинетической энергии можно использовать для приведения в движение лопастного колеса, поднимающего ведро с водой (рис. 2-17, Б). Как видно из этого рисунка, булыжники достигают земли, лишь проворачивая колесо. Следовательно, самопроизвольная реакция - падение булыжника - непосредственно связана с несамопроизвольной реакцией - подъемом ведра с водой. Поскольку часть энергии теперь расходуется на выполнение работы (Б), булыжники достигают земли с меньшей скоростью, чем в случае А, и, следовательно, меньшая часть энергии теряется в виде тепла.

Рис. 2-17. Механическая модель, иллюстрирующая принцип сопряженных химических реакций. А. Спонтанная реакция может служить аналогией непосредственного окисления глюкозы до СО2 и Н2О, сопровождающегося образованием только тепла. Б. Та же реакция сопряжена со второй реакцией; эта вторая реакция может служить аналогией синтеза АТР. Большое многообразие форм энергии, получаемой в случае Б, можно использовать для инициирования других клеточных процессов, аналогично тому, как это показано на рис. В. АТР представляет собой наиболее универсальную форму хранения энергии клетки.

Ферменты в клетке играют ту же роль, что и лопастное колесо в нашем примере, и связывают самопроизвольное окисление питательных веществ с реакциями, в которых образуется нуклеотидтрифосфат АТР. Энергию, запасенную в поднятом на некоторую высоту ведре с водой (рис. 2-17), можно небольшими порциями расходовать на приведение в движение самых разнообразных гидравлических машин (рис. 2-17, В); точно так же и энергия, аккумулированная в АТР - этой универсальной энергетической валюте, - может использоваться для обеспечения множества различных химических реакций, необходимых клетке.

2.2.7. Гидролиз АТР обеспечивает упорядоченность в клетке [12]

Каким образом АТР выполняет роль переносчика химической энергии? В условиях, существующих в норме в цитоплазме, гидролиз АТР с освобождением неорганического фосфата (Рі) осуществляется очень легко и сопровождается выделением большого количества биологически полезной энергии (разд. 2.4.1). Химическая группа, соединенная с молекулой АТР такой реакционноспособной связью, легко переходит на другую молекулу, поэтому можно считать, что концевой фосфат АТР находится в активированном состоянии. Связи, подвергающиеся разрыву в подобных реакциях гидролиза, иногда называют высокоэнергетическими связями. Существенно важно, что при гидролизе в водных растворах образуются две молекулы, обладающие значительно меньшими энергиями (ADP и PI); сами же ковалентные связи никакими специфическими особенностями не обладают.

Прочие химические реакции могут протекать за счет энергии, выделяющейся при гидролизе АТР, при условии, что они так или иначе сопряжены с этим процессом. Среди многих сотен реакций, запускаемых гидролизом АТР, следует отметить реакции синтеза биологических молекул, активный транспорт через клеточные мембраны, а также реакции, обусловливающие генерирование механических сил клеток и способность к движению. Процессы этих трех типов играют решающую роль в упорядоченности биологических систем. Макромолекулы, образующиеся в биосинтетических реакциях, переносят информацию, катализируют специфические реакции и организуются в исключительно упорядоченные структуры как в клетке, так и во внеклеточном пространстве. Связанные с мембраной насосы поддерживают специфический состав внутриклеточной среды и способствуют передаче внутриклеточных и межклеточных сигналов. Наконец, наличие механических сил и способности к движению делает возможным самоорганизацию цитоплазматического содержимого клетки, а также позволяет самим клеткам перемещаться и группироваться с образованием специализированных тканей.

Заключение

Живые клетки в высшей степени упорядочены, причем поддержание упорядоченности необходимо им для роста и выживания. С термодинамической точки зрения это возможно лишь благодаря постоянному вводу энергии, часть которой выделяется клетками в окружающую среду в виде тепла. Вообще говоря, первичным источником энергии является электромагнитное излучение Солнца; в фотосинтезирующих организмах, таких, как зеленые растения, под его воздействием образуются органические молекулы. Животные получают энергию, захватывая эти органические молекулы и окисляя их в ряде ферментативных реакций, сопряженных с образованием АТР. АТР представляет собой универсальную энергетическую валюту для всех клеток, и гидролиз этого соединения, сопряженный с другими реакциями, запускает множество энергетически невыгодных процессов, обеспечивая таким образом создание упорядоченности.