Биохимические основы жизнедеятельности организма человека - Волков Н.И., Несен Э.Н. 2000
Биохимия спорта
Биохимия мыши и мышечного сокращения
Типы мыши и мышечных волокон
Типы мыши
В организме человека существует три типа мышц: скелетные, сердечные (миокард) и гладкие. Различаются они морфологическими, биохимическими и функциональными особенностями, а также путями развития. При микроскопическом исследовании в скелетных и сердечной мышцах обнаруживается исчерченность, поэтому их называют поперечно-полосатыми мышцами. В гладких мышцах такая исчерченность отсутствует. Функционально сердечная мышца отличается от скелетных мышц и занимает промежуточное положение между гладкими и скелетными мышцами. Сердечная мышца сокращается ритмично с последовательно изменяющимися циклами сокращения (систола) и расслабления (диастола) независимо от воли человека, т. е. непроизвольно. Ее сокращение регулируется гормонами, например катехоламинами.
Сокращение гладких мышц инициируется нервными импульсами, некоторыми гормонами и не зависит от воли человека, так как их тонус не контролируется нашим сознанием. Гладкие мышцы включают мышцы внутренних органов, системы пищеварения, стенок кровеносных сосудов, а также кожи и матки, обеспечивая их сокращение и расслабление.
Скелетные мышцы прикреплены в основном к костям, что и обусловило их название. Сокращение скелетных мышц инициируется нервными импульсами и подчиняется сознательному контролю, т. е. осуществляется произвольно.
Для понимания биохимии мышечной деятельности наибольший интерес представляет функционирование скелетных мышц. Отдельная мышца руки или иной части тела окружена оболочкой соединительной ткани и имеет сложное морфологическое строение. Каждая мышца состоит из пучка мышечных волокон, которые содержат многочисленные сократительные нити — миофибриллы (рис. 112).
Рис. 112 Структурная организация скелетных мышц человека
Мышечное волокон
Мышечное волокно является структурной единицей скелетных мышц, представляя собой большую многоядерную клетку, а точнее — бесклеточное образование — симпласт, так как в процессе развития мышечная клетка образуется путем слияния множества эмбриональных отдельных клеток — миобластов. Клетка окружена плазматической мембраной — сарколеммой, которая покрыта сетью коллагеновых волокон, придающих ей прочность и эластичность. Длина отдельных мышечных клеток может достигать 10 см (портняжная мышца) и даже 50 см, толщина — до 0,1 мм. К мышечному волокну подходят окончания двигательных нервов, а также множество кровеносных сосудов.
Двигательный нерв, или мотонейрон имеет разветвленные аксоны и может иннервировать несколько мышечных волокон, которые вместе представляют функциональную единицу мышцы, называемую нейромоторной, или двигательной единицей (рис. 113). Такая единица работает как единое целое, т. е. сокращаются все входящие в нее мышечные волокна. Отдельная мышца состоит из многих двигательных единиц, которые могут не одновременно подключаться к мышечному сокращению. Сила и скорость сокращения мышцы зависит от количества участвующих в сокращении двигательных единиц, а также от частоты нервных импульсов.
Рис. 113 Схема двигательной единицы мышцы
Мышечные клетки не способны к делению, поэтому разрушенные мышечные волокна не могут восстановиться простым удвоением. В случае повреждения, что наблюдается при напряженной мышечной деятельности, самовозобновление мышечного волокна происходит из маленькой клетки — сателлита, которая находится в неактивном состоянии в тесном контакте со зрелыми мышечными волокнами. При нарушении структуры мышечного волокна она активируется и начинает пролиферировать, что приводит к образованию нового мышечного волокна.
В мышце количество мышечных волокон может достигать нескольких тысяч. У разных людей в одних и тех же мышцах может быть различное количество волокон, что влияет на их силовые способности, процессы адаптации к мышечной работе. Чем больше в мышцах волокон, тем большая возможность проявления максимальной силы мышц.
Типы мышечных волокон и их вовлечение в мышечную деятельность
В скелетных мышцах различают несколько типов мышечных волокон, отличающихся сократительными и метаболическими свойствами. К основным типам волокон относятся медленносокращающиеся (MC), или красные и быстросокращающиеся (БС), или белые (табл. 20).
ТАБЛИЦА 20. Морфологическая, метаболическая и функциональная характеристики мышечных волокон
Характеристика |
Тип волокон |
||
MC |
БСа |
БСб |
|
Включение в работу |
Малой интенсивности, на выносливость |
Большой интенсивности, кратковременную |
|
Количество волокон на мотонейроне |
10—180 |
300-800 |
300-800 |
Порог возбуждения мотонейронов |
Низкий |
Высокий |
Высокий |
Размеры двигательного нейрона |
Малые |
Большие |
Большие |
Размеры и количество миофибрилл |
Малые |
Большие |
Большие |
Сеть капилляров |
Большая |
Средняя |
Низкая |
Развитие саркоплазматического ретикулума |
Низкое |
Высокое |
Высокое |
Наличие митохондрий |
Много |
Много |
Мало |
Запасы белка миоглобина |
Большие |
Средние |
Малые |
Запасы углеводов (гликогена) |
Большие |
Большие |
Большие |
Активность ферментов: АТФ-азы миозина |
Низкая |
Высокая |
Высокая |
митохондрий |
Высокая |
Высокая |
Низкая |
гликолиза |
Низкая |
Высокая |
Высокая |
Скорость сокращения |
Малая (110 мс) |
Большая (50 мс) |
Большая (50 мс) |
Развитие силы |
Низкое |
Высокое |
Умеренное |
Утомляемость |
Слабая |
Сильная |
Сильная |
Выносливость |
Высокая |
Низкая |
Низкая |
Способность накапливать кислородный долг |
Практически отсутствует |
Высокая |
Высокая |
Содержание отдельных типов волокон в мышцах нижних конечностей человека, %: нетренированного |
55 |
35 |
10 |
бегуна-марафонца |
80 |
14 |
5 |
бегуна-спринтера |
23 |
48 |
28 |
Медленносокращающиеся и быстросокращающиеся волокна имеют разную скорость возбуждения, сокращения и утомления. Так, скорость сокращения MC-волокон составляет более 110 мс, а БС-волокон — 50 мс.
Отдельные типы волокон отличаются также механизмами энергообразования. Как следует из табл. 20, медленносокращающиеся волокна, которые имеют малую скорость сокращения, располагают большим количеством митохондрий, ферментов биологического окисления углеводов и жиров, белка миоглобина, который запасает кислород, а также большой сетью капилляров, обеспечивающих достаточное поступление кислорода в мышцы, и большими запасами гликогена. Все это свидетельствует о том, что в MC-волокнах преобладают аэробные механизмы энергообразования, которые обеспечивают выполнение длительной работы на выносливость. Мотонейрон, иннервирующий MC-волокна, имеет небольшое тело клетки и управляет относительно небольшим количеством мышечных волокон (10—180).
Быстросокращающиеся мышечные волокна характеризуются большим количеством миофибрилл, высокой АТФ-азной активностью миозина и ферментов гликолиза, наличием значительных запасов гликогена. Они имеют слаборазвитую капиллярную сеть и небольшое количество кислородсвязывающего белка — миоглобина. В связи с этим ресинтез АТФ в таких типах волокон осуществляется за счет анаэробных механизмов энергообразования — креатинфосфатной реакции и гликолиза. Наличие указанных выше биохимических особенностей обеспечивает высокую скорость сокращения и быстрое утомление этого типа мышечных волокон. БС-волокна приспособлены к скоростной интенсивной работе относительно небольшой продолжительности. Их мотонейроны имеют большое тело клеток и сильно разветвленные аксоны, поэтому иннервируют от 300 до 800 мышечных волокон.
Среди БС-волокон различают два подтипа: БСа, или тип IIа и БСб, или тип IIб. Они отличаются в основном механизмами энергообразования. БСа-волокна имеют высокую анаэробную гликолитическую и аэробную способность ресинтеза АТФ. Их еще называют "быстрые окислительно-гликолитические волокна". Используются они при интенсивной работе на выносливость, например при беге на 1000 м или плавании на 400 м. БСб-волокна имеют только высокие анаэробные способности ресинтеза АТФ, поэтому подключаются главным образом к кратковременной мышечной деятельности взрывного характера, например при беге на 100 м или плавании на 50 м. Особенности вовлечения в мышечную работу отдельных типов мышечных волокон показаны на рис. 114. Последовательность включения (рекруитирование) мышечных волокон в работу регулируется нервной системой и зависит от интенсивности нагрузок. При физической работе небольшой интенсивности — около 20—25 % уровня максимальной силы мышечных сокращений — в работу вовлекаются в основном МС-волокна. При более интенсивной работе — 25—40 % уровня максимальной силы сокращений — включаются БС-волокна типа "а». Если интенсивность работы превышает 40 % максимальной, вовлекаются БС-волокна типа "б». Однако даже при максимальной интенсивности в работу вовлекаются не все имеющиеся волокна: у нетренированных людей — не более 55—65 % имеющихся мышечных волокон (см. рис. 114, а), у высокотренированных спортсменов силовых видов спорта в работу могут вовлекаться 80—90 % двигательных единиц (см. рис. 114, б).
Рис. 114 Вовлечение (рекруитирование) мышечных волокон в работу разной интенсивности нетренированных людей (а) и высококвалифицированных спортсменов (б):
1 — МС-волокна; 2 — БСа-волокна; 3 — БСб-волокна; 4 — неиспользованные волокна
Подключение мышечных волокон к работе зависит от силы стимуляции мотонейроном. Минимальная величина стимуляции, при которой волокно сокращается максимально, называется порогом возбуждения (раздражения). Минимальный порог возбуждения имеют МС-волокна (10-—15 Гц); у БС-волокон порог возбуждения в 2 раза выше, чем у MC-волокон. Все типы мышц вовлекаются в работу при высокой частоте раздражения — около 45—55 Гц. Это важно учитывать при построении методики силовой подготовки спортсменов.
Количество MC- и БС-волокон в мышцах человека в среднем составляет 55 и 45 % соответственно (см. табл. 14). Среди БС-волокон большее количество составляют БСа (-30—35 %), меньшее — БСб (-10—15 %).
У сильнейших бегунов на длинные дистанции в икроножных мышцах ног содержится более 80 % MC-волокон, а у спринтеров — всего 23 %. Существует тесная корреляция между содержанием БС-волокон и скоростными способностями мышц. Количество отдельных типов мышечных волокон генетически закреплено, поэтому плохо поддается изменению при тренировке. Однако при специфической тренировке их объем значительно увеличивается. Экспериментальные данные последних лет свидетельствуют о возможности изменения количества типов волокон при длительных тренировках: превращение волокон БСа в БСб или в MC.